Fabrication and Characterization of AgNPs Incorporated PVA/ODA-MMT and PVP/ODA-MMT Nanofiber Structures by Green Electrospinning Nanotechnology as Excellent Conducting and Bioengineering Nanomaterial |
U. Bunyatovaa, Z. Rzayev b, İ.C. Koçum a, M. Şimşek b and M.B. Yürüksoy a
aDepartment of Biomedical Engineering, Faculty of Engineering, Baskent University, 06810 Ankara, Turkey bInstitute of Science and Engineering, Division of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara, Turkey |
Full Text PDF |
This work presents synthesis and characterization of novel nanofiber structures from the pure water solution blends of poly(vinyl alcohol, hydrolyzed 89%) (PVA/octadecylamine-montmorillonite (ODA-MMT, 5 mass%) as a matrix and poly(N-vinylpyrrolidone) (PVP)/ODA-MMT (5 mass%) as a partner preintercalated nanocomposites and their AgNPs incorporated derivatives by green electrospinning nanotechnology. The chemical and physical structures, surface morphologies, and conductivities were investigated by the Fourier transform: infrared, X-ray diffraction, scanning electron microscopy, conducting analysis methods. The fabricated multifunctional nanofibers predominantly exhibit colloidal-like amorphous structures, which is an important factor to improve tendency to self-assembly and therefore, the conductivities of the nanofiber polyelectrolyte structures. Obtained morphologies of composite nanofibers show cross-section structures with fine diameter distribution with higher contact areas. The nanofiber composites show excellent electrical conductivity at temperature range of 20-45°C. The obtained unique properties of multifunctional nanofiber surfaces with higher contact areas can be used for wide applications in microelectronics, sensor devices, nanolithography (X-ray, E-beam and photoresists), electrochemical (surface functionalized electrods) and bioengineering processing. |
DOI: 10.12693/APhysPolA.129.431 PACS numbers: 81.07.-b |