Studies on Approximation Methods in Calculating the Magnetic Dipolar Interaction Energy, and Its Impact on the Relaxation Time of Magnetic Nanoparticle Systems
M. Cacciolaa and A. Berdie b
aUniversity "Mediterranea" of Reggio Calabria, DICEAM, Via Graziella Feo di Vito, I-89100 Reggio Calabria, Italy
b"Politehnica" University of Timisoara, Department of Electrical Engineering and Industrial Informatics, Piata Victoriei No. 2, 300006 Timisoara, jud. Timis, Romania
Received: May 4, 2015; In final form: November 25, 2015
Full Text PDF
The studies on monodomain magnetic nanoparticle systems in colloidal suspensions have heightened lately due to their technological applications, in particular in medicine. Most applications depend on the behaviour of these systems in external magnetic field. In these systems, the nanoparticle dynamics are characterized by the Néel relaxation time and Brownian relaxation time. Due to the complexity of these systems, modelling and numerical simulation, requiring some methods of calculation, are used in the studies. Lately, it has been experimentally and theoretically shown that the magnetic dipolar interactions among nanoparticles influence the behaviour of the systems, even at low concentrations of nanoparticles. The complexity of the problem related to this type of interaction comes from its long-range anisotropic characteristic. This paper presents a series of studies on how the approximation methods, used for the dipolar magnetic interaction energy calculation, affect the magnetic nanoparticle relaxation time, as well as the impact of this aspect on the interpretation of results.

DOI: 10.12693/APhysPolA.129.88
PACS numbers: 75.75.Fk