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The studies on monodomain magnetic nanoparticle systems in colloidal suspensions have heightened lately
due to their technological applications, in particular in medicine. Most applications depend on the behaviour of
these systems in external magnetic field. In these systems, the nanoparticle dynamics are characterized by the Néel
relaxation time and Brownian relaxation time. Due to the complexity of these systems, modelling and numerical
simulation, requiring some methods of calculation, are used in the studies. Lately, it has been experimentally
and theoretically shown that the magnetic dipolar interactions among nanoparticles influence the behaviour of
the systems, even at low concentrations of nanoparticles. The complexity of the problem related to this type of
interaction comes from its long-range anisotropic characteristic. This paper presents a series of studies on how
the approximation methods, used for the dipolar magnetic interaction energy calculation, affect the magnetic
nanoparticle relaxation time, as well as the impact of this aspect on the interpretation of results.
DOI: 10.12693/APhysPolA.129.88
PACS: 75.75.Fk

1. Introduction

The magnetic nanoparticles (MNPs) are parts of mag-
netic materials with typical nanometrical size (usually
<100 nm). They are naturally found in various mate-
rials, but can be also artificially made and used as the
component of nanofluids, biomedical materials, perma-
nent magnets, soft magnetic materials, etc. Their prop-
erties are very interesting, both from a scientific and a
technological point of view. Some of the most impor-
tant applications of the nanoparticles are: biomedical
application, high density magnetic data storage media,
magneto-optical switches, sensors based on giant magne-
toresistance, etc.

The studies on monodomain MNPs systems in col-
loidal suspensions are recently becoming more and more
numerous, since their use in medical applications such
as: magnetic hyperthermia, magnetic resonance imag-
ing, drug targeting, biomarkers, biosensors, and separa-
tion of biomolecules [1–3]. The applications in medical
diagnostics and therapy require the magnetic nanopar-
ticles be stable in water at neutral pH and physiologi-
cal salinity. The system obtained under these conditions
represents a magnetic nanofluid system. The most com-
monly used nanoparticles in biomedical applications are
the iron-oxide nanoparticles Fe3O4 and γ-Fe2O3 [1]. The
volume fraction of magnetic materials has usually just
few percent.

The simulation and modelling are successfully used
in science and engineering [1–8]. Regarding the mod-
els which describe the magnetic behaviour of nanopar-
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ticle systems, the literature presents theoretical models
and simulation models. Some theoretical models, such
as Dormann–Bessais Fiorani and Morup–Tronc [9], are
generally applicable for weak interactions and use a se-
ries of approximations, more or less justified. However,
they have the advantage to provide analytical expres-
sions for extracting the system parameters. The sim-
ulation models offer an efficient simulation scheme and
have the major advantage to rigorously treat the local
and temporal fluctuations of the macroscopic quantities
characterizing the system. The mostly used simulation
methods are Monte Carlo [10–12] and the magnetization
dynamics [4]. Between theoretical and simulation mod-
els, we can set the so-called stochastic-phenomenological
models [13–16].

Regardless of the model adopted, a method to calculate
the dipolar magnetic energy of the system and the local
field on the nanoparticle is highly recommended. In fact,
the role of dipolar interactions is really important in a
number of applications, but still not well understood [17].
In this work, we propose a study about suitable modelling
the calculation of the magnetic dipolar field or energy,
with some discussion about the relationships between the
simulation performances and the modelling parameters.

2. Long-range magnetic dipole interactions and
calculation methods

Being the nanoparticles monodomainal, the quantum-
mechanical exchange interaction between the electronic
spins can keep all the atomic moments aligned. There-
fore, the total magnetic moment µi of the nanoparticle
has the order of about 104 µB [18]. Thus, each nanopar-
ticle is characterized by a magnetic moment, which is
usually given by [19]:
µi = Msviµ̂i (1)

(88)
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where Ms is the spontaneous magnetization, vi is the
particle volume and µ̂i is the unit vector of the magnetic
moments.

Let µi be the magnetic moment of the nanoparticle
i-th, and µj the magnetic moment of the j-th nanopar-
ticle with uniaxial anisotropy (Fig. 1). The energy of the
dipolar magnetic interaction between two nanoparticles
(i and j) is given by the equation

Eijd =
µ0

4π

µiµj
r3
ij

[µ̂i · µ̂j − 3 (µ̂i · r̂ij) (µ̂j · r̂ij)] (2)

where rij is the distance between the centres of those two
nanoparticles, r̂ij is the versor of the direction that con-
nects the nanoparticles i and j, µ̂i and µ̂j are the unit
vectors of the magnetic moments of the nanoparticles i
and j, and µ0 is the magnetic permeability of vacuum
(Fig. 1).

Fig. 1. Notation for the dipolar magnetic energy for-
mula.

Equation (2) can be written as follows:
Eijd = −µ0µi ·Hijd (3)

with
Hijd =

µj
4πr3

ij

[3r̂ij · (µ̂j · r̂ij)− µ̂j ] . (4)

Hijd is called local dipolar field due to the dipole–dipole
magnetostatic interaction of the two nanoparticles. Since
the nanoparticle i has a dipole–dipole magnetostatic in-
teraction with all the other nanoparticles, the dipolar
magnetic energy of the nanoparticle i and the local dipo-
lar magnetic field acting on the nanoparticle i can be
expressed as follows:

Eid = µ0

∑
j,j 6=i

µi · Ĥijd (5)

Hid =
1

4π

∑
j,j 6=i

µi
r3
ij

[3r̂ij · (µ̂j · r̂ij)− µ̂j ] . (6)

Hereinafter, we are going to discuss several methods for
the dipolar magnetic energy approximate calculation, in
order to numerically assess the provided results. Direct
summation in Eqs. (5) and (6) is also named analytical
(or “brute force”) method.

2.1. “Approximation 1”: the averaged method
In some scientific papers, the configuration of ran-

domly distributed nanoparticles, having magnetic mo-
ments and anisotropy axes aligned along the external
magnetic field, is analyzed. In this case, the energy of

the dipolar magnetic interaction between two nanoparti-
cles (i and j) is given by the first term of Eq. (20) [20]:

Eijd ≈
µ0

4π

µiµj
r3
ij

. (7)

Given Eq. (6), the local dipolar field can be expressed as

Hijd ≈ −
µj

4πr3
ij

(8)

In this approximation called “Approximation 1”, the
dipolar magnetic energy of the nanoparticle i and the
local dipolar field acting on the nanoparticle i are

Eid ≈
µ0µi
4π

∑
j,j 6=i

µj
r3
ij

, (9)

Hid ≈ −
1

4π

∑
j,j 6=i

µj
r3
ij

, (10)

where N is the number of nanoparticles in the system.
This approximation is valid only in intense external mag-
netic fields, so that the axes of anisotropy and magnetic
moments are aligned with the external magnetic field. On
the contrary, very intense magnetic fields are not allowed
in biomedical applications, because of interactions with
organs and organic tissues [21]. Therefore, the range of
values is usually between 11 kA/m to 30 kA/m.

2.2. “Approximation 2”: the parallel particle-to-particle
method

Now, let us assume that [22, 23]:

1. adjacent magnetic moments of the nanoparticles
are parallel;

2. the difference between the angles made by the mag-
netic moments of the nanoparticles with the direc-
tion connecting them is negligible;

3. the anisotropy axes are aligned with the external
magnetic field.

In this situation, we obtain the approximation

Eijd ≈
µ0

4π

(
1− 3 cos2 θij

)
r3
ij

µiµj , (11)

where θij is the angle between rij and the direction of
magnetic moments. Because of Eqs. (3) and (4),

Hijd ≈ −
1

4π

(
1− 3 cos2 θij

)
r3
ij

µj . (12)

In our study, we call this approximation as “Approxima-
tion 2”. In this case, the dipolar magnetic energy of the
nanoparticle i and the local dipolar field acting on the
nanoparticle i are

Eid ≈
µ0µi
4π

∑
j,j 6=i

(
1− 3 cos2 θij

)
r3
ij

µj (13)

Hid ≈ −
1

4π
·
∑
j,j 6=i

(
1− 3 cos2 θij

)
r3
ij

µj . (14)

Please note that this kind of approximation assumes
aligned magnetic anisotropy axes of the nanoparticles. It
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is an unrealistic approximation from a geometrical point
of view, since it is difficult to make configuration speci-
fied in point 1 of the previous list for real-world cases-of-
study.

2.3. “Approximation 3”:
the Dormann–Bessais–Fiorani method

Another approximation used in the theoretical mod-
els is the so-called Dormann–Bessais–Fiorani (DBF)
approximation [9], which we call “Approximation 3” in
this study. In this approximation, the anisotropy easy
axis is considered to be parallel with the z axis (Fig. 1).
Let ûxij , ûyij and ûzij be the components of the vector
found in the right bracket of Eq. (4), and x̂ij , ŷij and
ẑij , the components of the unit vector, r̂ij, with
x2
ij + ŷ2

ij + ẑ2
ij = 1. (15)

Then, referring to Fig. 1:
ûxij =

(
3x̂2

ij − 1
)

sin θj cosϕj + 3x̂ij ŷij sin θj sinϕj

+3x̂ij ẑij cos θj (16)

ûyij = 3x̂ij ŷij sin θj cosϕj +
(
3ŷ2
ij − 1

)
sin θj sinϕj

+3ŷij ẑij cos θj (17)

ûzij = 3x̂ij ẑij sin θj cosϕj + 3ŷij ẑij sin θj sinϕj

+(3ẑ2
ij − 1) cos θj . (18)

To simplify the expression of the dipolar mag-
netic energy [24, 25], DBF considered that the
probabilities to find the magnetic moment of the
j nanoparticle at (θj , ϕj) and (θj , ϕj + π) are
equal. Therefore, we can substitute Hijd with
Hijd (θj) = 1

2 [Hijd (θj , ϕj) +Hijd (θj , ϕj + π)]. It
is equivalent with the mediation of ϕj . By making this
mediation in the components given by Eqs. (16)–(18),
we obtain

Hijd ≈
1

4πr3
ij

vij cos θj , (19)

where vij is a vector with the components(
3x̂ij ẑij , 3ŷij ẑij , 3ẑ2

ij − 1
)
. With Eqs. (19), (3)

and (4), the expression of the dipolar magnetic energy
becomes

Eijd ∼= −
µ0µiµj
4πr3

ij

P (xij , yij , zij , θi, ϕi) cos θj (20)

with P (α,β,γ, θ, ϕ) = 3α̂γ̂ sin θ cosϕ+ 3β̂γ̂ sin θ sinϕ+(
3γ̂2 − 1

)
cos θ. By averaging again on ϕi, i.e. by

considering that the probabilities to find the magnetic
moment of the nanoparticle i at (θj , ϕj) and (θj , ϕj + π)
are equal, we obtain

Eijd ∼= −
µ0µiµj
4πr3

ij

(
3ẑ2
ij − 1

)
cos θi cos θj . (21)

Then, the dipolar magnetic energy of the nanoparticle i
and the local dipolar field act on the i-th particle (which
has components only along the z axis) are

Hid ≈ k
1

4π

∑
j,j 6=i

µj
(
3ẑ2
ij − 1

)
r3
ij

cos θj . (22)

With this notation, we obtain

Eid ≈ −µ0µiHid cos θi. (23)
Since this approximation considers the case of aligned
magnetic anisotropy axes of the nanoparticles, it is an
unrealistic simplification of magnetic dipolar energy.

2.4. The Ewald summation method

The Ewald summation method, named after Paul Pe-
ter Ewald, is a method for computing long-range interac-
tion in periodic systems. It was firstly developed as the
method for calculating electrostatic energies of ionic crys-
tals, and now it is commonly used for calculating long-
range interactions in computational condensed matter.
The Ewald summation replaces the summation of inter-
action energies in real space with an equivalent summa-
tion in Fourier space. In this method, the long-range
interaction is divided into two parts: a short-range con-
tribution, and a long-range contribution, which does not
have singularity. The short-range contribution is calcu-
lated in a real-space, whereas the long-range contribution
is calculated using a Fourier transform. The advantage
of the Ewald summation is a rapid convergence of the
energy compared with that of a direct summation. It
means that the method has high accuracy and reasonable
speed to compute long-range interactions. Moreover, this
method does not involve simplifications regarding the ge-
ometry of the magnetic moments. The total paired po-
tential energy of dipole–dipole interaction in a three di-
mensional periodic system is given by the following equa-
tion [26]:

Ed =
µ0

4π
· 1

2

N∑
i=1

N∑
j=1

‘∑
n∈Z3

{
µi · µj
|rij + n|3

−3 [µi · (rij + n)] · [µj · (rij + n)]

|rij + n|5

}
(24)

where rij = ri−rj . The sum over n is over all the simple
cubic lattice points, n = (nxL, nyL, nzL), with nx, ny,
nz, integers. The prime indicates that the i = j term
must be omitted for n = 0. The Ewald method provides
an efficient way to calculate Ed, by splitting the problem
into two convergent parts, one in real space and one in
reciprocal space. The local magnetic field acting on the
i-th nanoparticle is [26]:

Hid
∼= −

1

µ0

∂Ed
∂µi

. (25)

The details of the method are discussed in the litera-
ture, some of the related references being [26–28]. This
method has been widely applied in a number of papers,
such as [29–31].

3. Energy barriers and magnetic relaxation time

In 3D, in general, the energy of the i-th nanoparticle
of the system in the local magnetic field Hi = Hid +H
is [14–16]:

Ei = −µ0µiHi

(
µ̂i · Ĥi

)
−Ki,effVi (µ̂i · êi)2 (26)

where µ̂i is the unit vector in the direction of magnetic
moment of the i-th nanoparticle, Ĥi is the unit vector
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in the direction of local magnetic field acting on the i-th
nanoparticle, êi is the unit vector of the easy anisotropy
axis of the i-th nanoparticle and Ki,eff is the effective
anisotropy constant of the i-th nanoparticle. In Ref. [32]
it is supposed (without significant loss of generality) that
the Hi acts on the plane xOz. In this case, Eq. (26) in
spherical coordinates is

Ei (θi, ϕi) = −Ki,effVi cos2 θi − µ0µiHi (cos θi cosΨi

+ sin θi sinΨi cosϕi) . (27)
The polar axis is the easy axis of the i-th nanoparticle.
Ψi is the angle between Hi and the easy axis of the i-th
nanoparticle, and finally 0 ≤ θi ≤ π, 0 ≤ ϕi ≤ 2π are
the elevation and azimuth angles of the i-th particle in
polar coordinates, respectively.

The stationary points of the energy occur for ϕi = 0
and ϕi = π. The stationary point for ϕi = π corresponds
to a maximum of Ei (θi, ϕi) in Eq. (27), and so is not of
our interest. The stationary points at ϕi = 0, however,
correspond to a saddle point of Ei (θi, ϕi).

Under these assumptions, we applied the two state
model that provides analytical solutions for barriers at
Ψi = 0 and Ψi = π/2. For other values of Ψi, the solu-
tions are approximated according to Pfeiffer [33], taking
into account the random anisotropy axes of the particles.

In case of Ψi = 0 and weak local magnetic field (e.g. in
medical applications), the magnetic moment of a given
nanoparticle i can be in one of the two equilibrium states,
with minimum energies determined by θi = 0 or θi = π.
θi is the angle between the easy axis and the i-th mag-
netic moment. These minima are separated by the max-
imum. The energy barriers for these re-orientations are

Eib12 = Ki,effVi

[
1 +

µ0MsHi

2Ki,eff

]2

, (28)

Eib21 = Ki,effVi

[
1− µ0MsHi

2Ki,eff

]2

. (29)

When the i-th magnetic moment is normally oriented on
Hi, Ψi = π/2. In this case,

Eib12 = Eib21 = Ki,effVi

[
1− µ0MsHi

2Ki,eff

]2

. (30)

For other Ψi values, in weak local magnetic field, we can
apply the Pfeiffer approximation [33] and the lower en-
ergy barrier in accordance with this approximation

Eib = Ki,effVi

[
1− µ0MsHi

2Ki,effg (Ψi)

]α(Ψi)

,

Eib12 = Eib21 = Eib, (31)
where

g (Ψi) =
(

cos2/3 (Ψi) + sin2/3 (Ψi)
)−3/2

,

α (Ψi) = 0.86 + 1.14g (Ψi) . (32)
Please, we note Hi as the norm of Hi in Eqs. (28)–(31).

In order to find the reversal probability, we use a
stochastic model. It assumes that the rotations of mag-
netic moments due to the thermal fluctuations can be

modelled through the equation of probability. In this
way, it is possible to find the magnetic moments of the
particles at the time t, in the equilibrium state (1 or 2).
Let P1i(t) and P2i(t) be the probabilities to find the en-
ergy of the i-th particle into the state 1 or 2 at the time
t, respectively. With νi12 and νi21, we denote the prob-
abilities of transition, in time unit, from the state 1 to
the state 2 and vice versa, respectively. With these no-
tations, we obtain [34, 35]:

dP1i

dt
= νi21P21 (t)− νi12P12 (t) (33)

provided the normalisation condition
P12 (t) + P21 (t) = 1, (34)

νikl =
1

τ ikl
=

1

τ0
exp

(
−E

i
bkl

kBT

)
, k = 1, 2; l = 2, 1 (35)

where f0 = 1/τ0 is the attempt frequency of mag-
netic reversal, usually considered having a constant value
f0 = 109s−1. Thus, the Néel relaxation time τ iN for the
particle i is given by

1

τ iN
=

1

τ i12

+
1

τ i21

=
1

τ0

[
exp

(
−E

i
b21

kBT

)
+ exp

(
−E

i
b12

kBT

)]
. (36)

In the magnetic nanofluid, besides the Néel relax-
ation processes, there are Brownian relaxation processes.
These relaxation processes are due to physical rotation
of the nanoparticle in the base liquid. The Brownian re-
laxation time is given by [36]:

τ iB =
12πηr3

ih

kBT
, (37)

where rih is hydrodynamic radius and η is the dynamic
viscosity of the carrier liquid. We define an effective re-
laxation time [36], in the form

1

τ ieff

=
1

τ iN
+

1

τ iB
or τ ieff =

τ iNτ
i
B

τ iN + τ iB
. (38)

4. Impact of methods in calculating the
magnetic dipolar interaction energy on the
relaxation time of a magnetic nanoparticle

systems
In order to assess the impact of methods in calculating

the magnetic dipolar interaction energy on the relaxation
time of a magnetic nanoparticle systems we develop a nu-
merical calculation. The nanoparticles have been located
within a base-centred cubic lattice. Among all the pos-
sible discrete positions, the particles have been centred
in randomly selected suitable locations (e.g., Fig. 2 for
103 nanoparticles). The simulation box has been dimen-
sioned according to the volume fraction of nanoparticles.
We assumed periodic boundary conditions on all the sides
of the simulation box.

4.1. The simulation parameters
We consider a system composed by uncoated iron-

oxide spherical magnetic nanoparticles, with the satura-
tion magnetization Ms = 4.46× 105 A/m, average diam-
eter dm = 10 nm. The diameters of the particles have a
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Fig. 2. 3D random distribution for 103 nanoparticles
at the volume fraction f = 0.1, average diameter 10 nm
and lognormal distribution with 0.198 standard devia-
tion.

lognormal distribution motivated by experimental mea-
surements [37]. Standard deviation for diameter is 0.2dm
in our calculations. The most common type of mag-
netic nanoparticle anisotropy are: magnetocrystalline
anisotropy or magnetic anisotropy, surface anisotropy,
and shape anisotropy [17]. All these anisotropy have in-
fluence on the magnetic properties in different ways [38].
The total magnetic anisotropy of a spherical nanoparti-
cle, characterized by that effective anisotropy constant,
includes the contributions of surface and core of nanopar-
ticle is given by the phenomenological expression [17]:

Keff = Kv + 6
Ks

d
, (39)

where Kv is the magnetic anisotropy of the core (uniaxial
for spherical nanoparticle), Ks is the surface anisotropy
of the nanoparticle and d is the diameter of the nanopar-
ticle. According to Eq. (39), we considered a lognormal
distribution of effective anisotropy constants with aver-
age µKeff

= 104 J/m3 and standard deviation 0.1Keff .
The intensity of the external magnetic field applied is
15 kA/m, which is typical for the magnetic hyperthermia
applications. The analysed systems contain N = 103 and
N = 104 nanoparticles, in a base fluid with the dynamic
viscosity of 6×10−3 Pa s, at the temperature T = 298 K.
The nanoparticles’ volume fraction varies between 0.02
and 0.1.

4.2. Multi-criteria analysis of the pseudorandom
number generators

For accurate simulations, we also studied pseudoran-
dom generators, according to the super decision model
(Fig. 3, based on the multi-criteria analytical hierarchy
process (AHP) method [39, 40].

We simulated an in-study case of 1000 particles by di-
rect summation, taking into account the average Néel

relaxation time (τ̄N) in groups of 50 data, with 3 types of
pseudorandom generators, presented in Table I, for var-
ious values of the seed [41]. The execution times have
been recorded and are displayed in Table II.

TABLE I

Utilitary parameters of pseudorandom generator algo-
rithms: multiple stream and substream support (A) and
approximate period in full precision (B).

generator A B
Mersenne Twister (MT) no 219936 − 1

Combined multiple yes 2127

recursive generator (MRG)
Multiplicative lagged yes 2124

Fibonacci generator (MLFG)

TABLE II

Value (top) and execution time τ̄N (bottom) for simulated
data.

Generator
seed MT MRG MLFG

10
8.601568× 10−10 1.064920× 10−9 8.725124× 10−10

2.28874576 2.32073514 2.3254319

100
8.501283× 10−10 9.094906× 10−10 8.640541× 10−10

2.29193154 2.29078382 2.29079342

1000
8.620694× 10−10 8.611658× 10−10 8.815158× 10−10

2.28615483 2.32560564 2.35758171

The alternatives representing the 3 types of random
number generators can be ranked based on the obtained
priorities. In fact, the three levels of the model contain
nodes that define the elements of the problem, i.e. the
purpose, the criteria, and possible alternatives, and are
inter-connected in top-down direction. The level that
includes the criteria is selected with equal importance
weight, and the alternatives are assessed according to
preferences in relation to the criteria. Once this hier-
archical structure is defined, the elements on each level
are analysed in a procedure for prioritizing, settling their
relative importance on each level.

Two types of criteria are established in this analysis,
i.e.:

• the numerical criteria (Time1, Time2 and Time3),
representing the execution times resulted from the
measurements made for each seed;

• the non-numerical criterion (quality), representing
the approximate period in full precision.

Based on the AHP methodology, the determination of
relative weights of criteria is made by comparing the al-
ternatives two by two, relative to the objective found at
the upper level of the hierarchy. The pairwise compar-
isons are performed by assessing the generators based on
a scale from 1 to 9, as shown in Table III and representing
the degree of importance.

The result of quantification for these criteria (Priorities
versus the Quality parameter) shown that the Mersenne
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Fig. 3. The super decision model “Types of genera-
tors”.

TABLE III

The scale of relative preferences [40].

importance explanations
level grade
1 equal two elements contribute equally to

the objective
3 less the experience and judgment are

slightly favouring one over the other
element

5 middle the experience and judgment
are favouring one over the other
element

7 high An element is strongly favoured and
its domination is demonstrated in
practice

9 extreme the element is clearly favoured over
the other one

2,4,6,8 interm.

Twister generator is firstly ranked and, then, it should be
preferred than the MRG or MLFG in our simulations.

5. Results and discussions

After the selection of the suitable algorithm for gener-
ating random numbers, our first study involves the sim-
ulation of the average Néel relaxation time τ̄N and the
effective average relaxation time τ̄eff at volume fractions
ranging between 0.02 and 0.1. We exploited the four pre-
sented methods for calculating the dipolar magnetic in-
teraction energy and compare with analytical (or “brute
force”) method, i.e. the calculation of local magnetic field
on the nanoparticle.

We applied the Approximation 1, 2, 3, Ewald sum-
mation method and analytical (or “brute force”) method
with randomly oriented magnetic moments. The results
are proposed in Fig. 4. It is possible to note how the
applied approximation method influences the results ob-
tained for τ̄N and τ̄eff . It can be also seen that the “Ap-
proximation 1” and “Approximation 2” provide about the
same results.

Fig. 4. Average Néel and effective relaxation times ver-
sus the volume fraction of colloid nanoparticles. The
nested graph is a zoom on Ewald and “brute force”
methods only. (a) — τ̄N = 103 nanoparticles, (b) —
τ̄eff = 103 nanoparticles, (c) — τ̄N = 104 nanoparticles,
(d) — τ̄eff = 104 nanoparticles.

Note that, if the calculation is performed with the
Ewald summation method and “brute force” method, τ̄N
(or τ̄eff) decreases slightly with increasing volume frac-
tion. We noted that the results obtained by Ewald sum-
mation method and by “brute force” methods are very
similar. The slight decrease of relaxation time with the
increase of volume fraction has been experimentally ob-
served in dilute systems [8, 42, 24], when the Möss-
bauer spectroscopy measurements on weakly interact-
ing γ-Fe2O3 nanoparticles showed a decrease of the re-
laxation time with the increase of interparticle interac-
tion. In studying the specific absorption rate (SAR)
of a maghemite-based ferrofluid, Urtizberea et al. [43]
measured 3 kA/m and 109 kHz at 315 K. The mag-
netic characterization of three different concentrations of
this ferrofluid revealed a decrement of initial susceptibil-
ity values and Néel relaxation times with the increase of
concentration. By using the four approximation meth-
ods presented in this paper, we simulated the average
dipolar magnetic energy and the average energy barriers
Eb12, Eb21, including the average effective energy barrier
Ebm = (Eb12 +Eb21)/2 (Figs. 5, 6). Regarding the dipo-
lar magnetic energy, since the method “Approximation
1” and “Approximation 2” provide the highest value for
the dipolar magnetic energy, since they are working with
aligned and parallel magnetic moments. The Dormann–
Bessais–Fiorani method (“Approximation 3”) offers lower
values, because it only considers the component of the lo-
cal dipolar field along the direction of external magnetic
field. Finally, the Ewald summation method gives lower
dipolar magnetic energies, because we applied it in more
general conditions, i.e., without imposing a preferred ori-
entation of the easy axes and magnetic moments. Please
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note that the results obtained for dipolar magnetic en-
ergies by the Ewald summation method and by “brute
force” method are very similar.

Fig. 5. The average dipolar magnetic energy for a sys-
tem with 103 particles with the volume fraction 0.1,
calculated by: “Approximation 1” (1st series), “Approx-
imation 2” (2nd series), “Approximation 3” (3d series),
Ewald summation method (4th series), analytical (or
“brute force”) method (5th series).

Fig. 6. Energy barriers for a system with 103 parti-
cles with the volume fraction 0.1, calculated by: “Ap-
proximation 1” (1st series), “Approximation 2” (2nd se-
ries), “Approximation 3” (3d series), Ewald summation
method (4th series), analytical (or “brute force”) method
(5th series).

Analysing the average energy barriers, we can see that
there are no significant differences among the simulations
performed by using the first three approximation meth-
ods. Instead, when working with the Ewald summation
method in terms of random distribution of anisotropy
easy axes, we used the Pfeiffer approximation for the en-
ergy barrier (Eq. (35)) [33]. Usage of “Approximation
1” and “Approximation 2” in case of random distribu-
tion of anisotropy easy axes is not suitable. There are
many papers in the literature, especially related to mag-
netic hyperthermia, which not consider dipolar magnetic
interactions or consider alignment of magnetic moments
along the direction of the external magnetic field even in
weak fields [44–46]. Actually, the oriented state of the
magnetic nanoparticles changes dramatically depending
on the size and shape of the nanoparticles, the viscos-
ity of their surroundings, and the alternating magnetic
field conditions. Also, recent researches show that the
influence of magnetic dipolar interactions cannot be ne-
glected in the case of low concentrations of nanoparti-

cles [17]. The following Table IV shows the runtime for
running the various methods. The simulations have been
carried out with a 2.13 GHz Intel® CoreTM P7450 pro-
cessor (1066 MHz FSB, 3 MB L2 cache) with 4 GB DDR3
RAM.

TABLE IV

Runtime for different approximation methods and parti-
cle numbers.

type runtime [s]
1000 5000 10000

App. 1 1.401118 16.470398 64.573375
App. 2 2.896265 39.216689 142.791277
App. 3 1.388862 15.912926 54.220290
Ewald 2.536140 22.494049 81.969832
direct 2.286039 27.447619 96.228571

6. Conclusions
Within this paper, we dealt with the mostly used ap-

proximations methods for the calculation of long range
magnetic dipolar interaction energy. Our aim was to
study how these methods influence the Néel relaxation
time and the effective relaxation time for a nanofluid.

Usually, when a system includes a relatively low num-
ber of nanoparticles, analytical, i.e., “brute force” method
is suitable to be implemented. But, when the number of
nanoparticles increases dramatically, the time of calcula-
tion of “brute force” method seriously rises since its com-
putational complexity equals to O(n2), with n the num-
ber of nanoparticles. Therefore, a system with a huge
number of nanoparticles (e.g. 107 and higher) is diffi-
cult to be managed by a single computer, and it needs
dedicated resources of calculation to be solved. This is
the reason to exploit approximation methods, so that
the computational complexity (and thus the time of cal-
culation) can be reduced. Therefore, a comparison with
analytical results is useful to establish which kind of ap-
proximation method should be exploited, and in which
simulation conditions. That is why we restrict the com-
parison to systems having 103 or 105 nanoparticles: we
aim to establish the usefulness of approximation meth-
ods with numbers of nanoparticles which can be handled
by usual computing systems, in order to be furtherly ex-
ploited for greater numbers of nanoparticles.

Our studies show that the approximation methods af-
fect pretty much the Néel relaxation time, the effective
relaxation time, and other quantities of a nanoparticle-
based colloidal system. Therefore, a suitable choice of
the approximation method is required, in order to have
robust results. The choice of the approximation method
depends on the condition of the in-study nanofluid, espe-
cially if it is saturated or not when an external magnetic
field is applied. If it is highly saturated, we can work
with the “Approximation 1” (Table IV).

If the degree of magnetic saturation is lower but mag-
netic anisotropy axis of nanoparticles are aligned, we can
try the “Approximation 3” (Table IV). The “Approxima-
tion 2” (Table IV) is instead efficient at small particle
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number but shows inefficiency for high number of parti-
cles. In order to have a realistic simulated system, we
have to accurately assess the approximation conditions
when using the methods “Approximation 1”, “Approxi-
mation 2” or “Approximation 3”, since conditions can af-
fect the results. Moreover, the problem of time efficiency
of the applied algorithm arises. When the system con-
tains many nanoparticles, the method “Approximation 2”
is not computationally efficient in time, being more time
consuming than direct summation method (Table IV). It
is possible to note how the results obtained for dipolar
magnetic energies by the Ewald summation method and
by “brute force” method are very similar. The Ewald
summation allows for application of short cut-off dis-
tances without the loss of accuracy. In our work, we
stated to cut-off parameters in real and Fourier space,
as well as the optimal α value, according to the method
proposed by [47, 48]. The Ewald summation method has
a more constant time efficiency with the increase of the
number of nanoparticles. It is due to its intrinsic formu-
lation, since it is a special case of the Poisson summation
formula, replacing the summation of interaction energies
in real space with an equivalent summation in Fourier
space. Therefore, we have a more rapid convergence
of the energy than the direct summation. This means
that the method has high accuracy and reasonable speed
when computing long-range interactions. Moreover, the
use of Ewald summation method does not require the
knowledge of information about the degree of magnetic
saturation, being a general method for the evaluation
of magnetic dipole–dipole interactions in the presence of
periodic boundary conditions. It also offers a compu-
tational efficiency, because the conditionally convergent
dipole–dipole interaction energy sum is split into rapidly
convergent real-space and Fourier-space series, which are
truncated in order to evaluate the energy to a desired
accuracy.
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