Domain Dynamics in Nonequilibrium Random-Field Ising Models
S. Hrivňak, M. Žukovič
Institute of Physics, Faculty of Sciences, P.J. Šafárik University, Park Angelinum 9, 041 54 Košice, Slovakia
Full Text PDF
We employ Monte Carlo simulations in order to study dynamics of the magnetization and domain growth processes in the random-field Ising models with uniform: and Gaussian random field distributions of varying strengths. Domain sizes are determined directly using the Hoshen-Kopelman algorithm. For either case, both the magnetization and the largest domain growth dynamics are found to follow the power law with generally different exponents, which exponentially decay with the random field strength. Moreover, for relatively small random fields the relaxation is confirmed to comply with different regimes at early and later times. No significant differences were found between the results for the uniform and Gaussian distributions, in accordance with the universality assumption.

DOI: 10.12693/APhysPolA.126.38
PACS numbers: 75.10.Hk, 75.10.-b, 75.60.-d, 75.78.-n