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We employ Monte Carlo simulations in order to study dynamics of the magnetization and domain growth pro-
cesses in the random-�eld Ising models with uniform and Gaussian random �eld distributions of varying strengths.
Domain sizes are determined directly using the Hoshen-Kopelman algorithm. For either case, both the magnetiza-
tion and the largest domain growth dynamics are found to follow the power law with generally di�erent exponents,
which exponentially decay with the random �eld strength. Moreover, for relatively small random �elds the relax-
ation is con�rmed to comply with di�erent regimes at early and later times. No signi�cant di�erences were found
between the results for the uniform and Gaussian distributions, in accordance with the universality assumption.
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1. Introduction

The random-�eld Ising model (RFIM) has been inten-
sively studied since its introduction by Imry and Ma [1].
It is a prototypical model for magnetic systems with
quenched disorder, in which competing mechanisms for
order and disorder coexist. While the local spin interac-
tions favor ferromagnetic ordering, the random �eld vari-
ations tend to destroy it. This competition drastically
a�ects thermodynamic properties. As a result, for ex-
ample, the two-dimensional (2D) RFIM has been shown
to display no long-range ordering at any temperature [2].
Thus, in the 2D RFIM statistical mechanics of interfaces
or domain walls becomes the key question. Unlike in the
zero-�eld Ising model, in the RFIM it is not always pos-
sible to shrink the domain walls to reduce the surface
energy and the domain walls are said to be pinned by
the local �elds. Thus, when the domain walls evolution
is �nished, the system remains in a disordered state, al-
beit resulting ferromagnetic domains may be very large.
This gives rise to multimodality of the free energy surface
and the resulting long relaxation times. Dynamical prop-
erties of the 2D RFIM were recently studied for random
�elds with uniform distribution [3]. Even though most
of the model properties are thought to be independent of
the distribution, some di�erences can still be found [4].
The purpose of the present work is to study the behav-

ior of the 2D RFIM in the nonequilibrium region with
emphasis on the nature of the magnetization and do-
main growth processes for uniform and Gaussian random
�elds.

2. Model and method

The Hamiltonian of the 2D RFIM can be written in
the form

H = −J
∑
〈i,j〉

sisj +
∑
i

ηisi, (1)

where J is the coupling constant, conventionally set to
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unity, si = ±1 and ηi represent respectively the Ising
spin and the quenched random feld on the ith site, and
〈i, j〉 denotes the summation over nearest neighbors. In
the present study, ηi is drawn from a zero-mean Gaussian
and uniform distributions with varying strengths η0. The
parameter η0 is proportional to the standard deviations
of the respective distributions so that also their second
central moments match.
We perform Monte Carlo simulations of the RFIM on

a square lattice of the size 256 × 256 at a reduced tem-
perature kBT/|J | = 0.5. We employ the Metropolis dy-
namics and apply periodic boundary conditions to elim-
inate boundary e�ects. In most similar studies, domain
(cluster of spins in the same state) sizes were estimated
indirectly from the �uctuations in magnetization. In the
present study, for better precision we directly measure
them by Hoshen-Kopelman algorithm [5]. In order to
improve the accuracy and the quality of the results we
have performed 50 independent simulation runs, and the
resulting quantities presented below, represent the ob-
tained average values.

3. Results and discussion

The time (Monte Carlo sweep) evolution of the magne-
tization curves for the RFIM with both uniform (URF)
and Gaussian (GRF) random �elds of di�erent strengths
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Fig. 1. Log-log plots of the magnetization time evolu-
tion for GRF with the strengths from η0 = 0.2 (top) to
η0 = 2.6 (bottom). The dashed lines represent the best
linear �ts.
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Fig. 2. Variations of the magnetization growth expo-
nent β(η0) with the RF strength η0 for URF and GRF.
The dashed lines denote the best exponential �ts to the
data points.
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Fig. 3. Log-log plots of the largest domain size as a
function of time for η0 = 0.2 (top) up to η0 = 2.6 (bot-
tom). The dashed lines represent the best linear �ts to
the data points.
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Fig. 4. Variations of the largest domain growth expo-
nent µ(η0) with the RF strength η0 for URF and GRF.
The dashed lines denote the best exponential �ts to the
data points.

η0 show similar behavior and thus in Fig. 1a we only
present the results for GRF. Apparently, the character
of the evolution of the magnetization strongly depends
on the strength of the disorder. Namely, before the sat-
uration value is reached, the magnetization growth can
be characterized by the power law behavior with the η0-
dependent exponent β(η0). The dependence of the power
law exponent β(η0) on the disorder strength η0 is shown
in Fig. 2. In both URF and GRF it is found to follow the
exponential law with similar decay exponents cβ , given
in Fig. 2. Such a decrease of the exponent β with η0

could be expected. With the increasing strength of dis-
order η0 spin �ips are gradually suppressed owing to the
presence of the pinning interaction term (the second term
in the Hamiltonian) and consequently the domain walls
get pinned, leaving the system in a disordered phase. The
fact that the URF and GRF exponents take similar values
can be ascribed to the universality phenomenon, which
assumes the RFIM properties independent on the choice
of the RF distribution.
In Fig. 3 we demonstrate the growth dynamics of the

largest domain in the GRF case, again for various val-
ues of the strength parameter η0. For weak disorder
(η0 ≤ 0.3) we observe three distinct time regimes. The
early and intermediate time regimes follow the power
law behavior with generally di�erent exponents µ(η0)
and ν(η0), respectively, and the late time regime corre-
sponds to the steady state. For larger disorder strengths
(η0 > 0.3) there is only one power law regime with the
exponent µ(η0). The variations of µ(η0) with η0 are plot-
ted in Fig. 4 for both URF and GRF. It is evident that,
similar to the magnetization behavior, they fall o� ex-
ponentially, however, the decay exponents cµ are consid-
erably di�erent from the magnetization decay exponents
cβ . Nevertheless, the di�erence between the URF and
GRF values is again very small.

4. Conclusions

We studied the nonequilibrium behavior of the 2D
RFIM with uniform and Gaussian RF distributions.
The dynamic evolution of the magnetization exhibited
a power-law growth with the exponent β(η0), falling o�
exponentially with the RF strength η0. The growth of
the largest domain followed the power law with di�erent
exponent µ(η0), which fell o� with η0 even faster than
β(η0). For weak disorder, we observed di�erent regimes
at early and later times. For the uniform RF the present
results agree with those in Ref. [3] within statistical er-
rors. No signi�cant di�erences were found between the
uniform and Gaussian RF distributions, presumably due
to the universality phenomenon.
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