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Cardiotocography is a monitoring technique providing important and vital information on fetal status during
antepartum and intrapartum periods. The advances in modern obstetric practice allowed many robust and reliable
machine learning techniques to be utilized in classifying fetal heart rate signals. The role of machine learning
approaches in diagnosing diseases is becoming increasingly essential and intertwined. The main aim of the present
study is to determine the most efficient machine learning technique to classify fetal heart rate signals. Therefore,
the research has been focused on the widely used and practical machine learning techniques, such as artificial neural
network, support vector machine, extreme learning machine, radial basis function network, and random forest. In
a comparative way, fetal heart rate signals were classified as normal or hypoxic using the aforementioned machine
learning techniques. The performance metrics derived from confusion matrix were used to measure classifiers’
success. According to experimental results, although all machine learning techniques produced satisfactory results,
artificial neural network yielded the rather well results with the sensitivity of 99.73% and specificity of 97.94%.
The study results show that the artificial neural network was superior to other algorithms.
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1. Introduction

Cardiotocography (CTG), which consists of fetal heart
rate (FHR) and uterine contraction (UC) signals, is used
widely by obstetricians during antepartum and intra-
partum periods for the biophysical assessment of fetal
condition [1]. The signals are recorded simultaneously us-
ing electronic fetal monitoring (EFM) devices. CTG re-
lies upon FHR, UC, and fetal movement activity and it is
employed to detect dangerous situations for the fetus [2].
The aim of intrapartum fetal monitoring is to detect hy-
poxia or asphyxia and prevent fetal injury [3]. Oxygen
deficiency of the fetus during labor is evaluated in three
stages, namely, hypoxemia, hypoxia, and asphyxia [4].
The fetal defense mechanism manages this process with
the help of the sympathetic and parasympathetic ner-
vous systems. Although CTG has a high false-positive
rate, it is a useful tool to observe situations that lead
to fetal distress, such as prolonged spontaneous rupture
of membranes, prematurity, and intrauterine growth re-
striction. The advantages of this surveillance technique
have not been proven clearly, however it has also become
a standard of care in many developed countries [5].

The advances in modern obstetric practice allowed
many robust and reliable machine learning techniques
to be utilized in classifying FHR patterns [6]. Huang
and Hsu [7] have offered discriminant analysis (DA), de-
cision tree (DT), and artificial neural network (ANN)
to evaluate fetal distress. Yılmaz and Kılıkçıer [8] have
suggested using least square (LS) support vector machine
(SVM) with particle swarm optimization and binary DT.
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Ocak [9] has developed a medical decision support sys-
tem based on SVM and genetic algorithm (GA). Sahin
and Subasi [10] have compared the performances of eight
different machine learning techniques by using WEKA
software. As seen in mentioned works, some works focus
on the classifying performance, whereas some of them try
to find the most relevant features in order to reduce the
dimension of feature space. The role of machine learn-
ing approaches in diagnosing diseases is becoming in-
creasingly essential and intertwined [11]. In this context,
the present study offers a comparison that is focused on
the performances of five different machine learning tech-
niques on FHR classification problem in terms of sensi-
tivity (Se), specificity (Sp), geometric mean of Se and Sp
(GM), and F-measure (F1). Also, unlike other works, ex-
treme learning machine (ELM) algorithm with five differ-
ent activation functions was evaluated extensively. The
performance results of classifiers were compared to each
other. Although all machine learning techniques pro-
duced rather well performances, ANN was superior to
others.

2. Materials and methods
Machine learning techniques have been used in wide

application range. Gradient descent, standard optimiza-
tion, and least-square based methods are the main ap-
proaches to the training of networks [12]. This work has
concentrated on most used and efficient machine learning
methods, such as ANN, SVM, ELM, radial basis function
network (RBFN), and random forest (RF). In this sec-
tion, the data set and chosen machine learning techniques
are described briefly.

2.1. Data collection
A publicly accessible data set was used in this study.

The data set includes 2126 instances with 21 features
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comprising of 8 continuous and 13 discrete values. The
data set was created automatically by the software called
SisPorto 2.0 [13]. As seen in Table I, the suspected in-
stances were excluded from the original data set because
these cases do not have any contribution to establishing
of the diagnosis [10]. The general features of the data set
are shown in Table I. Each algorithm performance was
tested several times using 10-fold cross-validation during
the training phase.

TABLE I

The summary of SisPorto data set.

Data set # Samples # Features # Class # Samples per class
original 2126 21 3 1655–295–176
restricted 1831 21 2 1655–176

2.2. Artificial neural network
ANN is an artificial computational technique for func-

tion approximation or categorization of multivariate
data. It is composed of a series of neurons that is or-
ganized in layers. The structure of ANN comprises input
layer, one or more hidden layer(s), and output layer [14].
Equation (1) presents the value as an output of a layer.
σ demonstrates the activation function, N indicates the
number of input neurons, wij represents the weights, xj
symbolizes the inputs, and b denotes the threshold value
for hidden neurons.

ai = σ

 N∑
j=1

wijxj + bi

 . (1)

2.3. Support vector machine
SVM is a kernel mapping technique that can be ap-

plied to separable and non-separable data for regression,
classification, and other learning tasks. Kernel-based al-
gorithms have good generalization performance, and they
work well in practice [15]. The similarity or dissimilarity
of data objects is measured by kernels used to store data.
The training data, which is separable by a hyperplane, is
modeled in the following formula:

xiw + b ≥ +1 for yi = +1,

xiw + b ≤ −1 for yi = −1,
yi(xiw + b)− 1 ≥ 0 ∀i

. (2)

2.4. Extreme learning machine
ELM is a special training algorithm for single-hidden

layer feedforward neural network (SLFN), which ran-
domly chooses hidden nodes and provides emergent
learning [16]. The essence of ELM is only one hidden
layer, which does not need to be tuned. Its advantages in-
clude extremely fast learning speed, less human interven-
tion, and excellent computational scalability [17]. Stan-
dard SLFNs with N arbitrary (xiti) samples are modeled
as follows:

fL(x) =

L∑
i=1

βihi(xj) =

L∑
i=1

βih(wixj + bj) = oi,

j = 1, . . . , N, (3)
where hi denotes the activation function, L is the number
of hidden layer nodes, wi is the weight vector between the
i-th hidden node and the input nodes, βi is the weight
vector between the i-th hidden node and output nodes.
The generalized inverse matrix of H is calculated accord-
ing to Moore-Penrose. ELM can overcome slow training
speed and being stuck in a local minimum of traditional
training algorithm and have better generalization and
is extensively used in regression and classification prob-
lems [18].

2.5. Radial basis function network
RBFN is a useful feedforward neural network architec-

ture using radial basis functions as activation functions.
It is typically configured with a single-hidden layer that
uses Gaussian or some other kernel functions [19]. It
includes an input vector, a layer of radial basis func-
tion (RBF) neurons, and an output layer. Unsupervised
learning technique is used in the hidden layer. The linear
combination of weights is employed in the output of the
network.

2.6. Random forest
RF is a classifier that grows on many classification

trees, which increases classification accuracy and accom-
plishes better generalization, for large databases in en-
semble learning. RF uses multiple prediction models by
aggregating a group of classifiers that is known as base
classifiers, which are independent of each other [20]. Mul-
tiple trees are built randomly with a subspace of features.
The forest selects the classification having the most votes.
Majority voting is frequently used to aggregate the base
classifier. The majority voting error rate (εmv) is given
as follows:

εmv =

M∑
i=|M2 |+1

(
M

i

)
εi(1− ε)M−i. (4)

M represents the number of base classifier and ε repre-
sents the identical error rate for all base classifiers.

3. Results

Several performance metrics are required to evaluate a
classifier success after the training phase. Several perfor-
mance criteria have been obtained by using the confusion
matrix and are given in Table II with their mathematical
form and short description.

The cross-validation is a suitable technique, which con-
sists of dividing the data into k subsamples, for moderate-
sized data set. The average error rate is obtained by using
each subsample for k− 1 times. In this context, the data
set was partitioned as training and testing set. After
this, 10-fold-cross validation was employed to estimate
the average accuracy of the model.

During the configuration of ANN, twelve training al-
gorithms were used so as to determine the most efficient
one. The network employed the Levenberg–Marquardt
backpropagation training algorithm (LM) and only one
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TABLE II

The performance metrics obtained from confusion matrix
for comparison of the algorithms.

Metrics Formula Description

sensitivity
(

TP
TP+FN

)
the measure of correctly classified
positive cases

specificity
(

TN
TN+FP

)
the measure of the false positive
errors

geometric
mean

√
Se× Sp the geometric mean of Se and Sp

F-score
(

2TP
2TP+FP+FN

)
the measure of the harmonic
mean of the precision and recall

Herein, true positive (TP ) and true negative (TN) represent
true classification for positive and negative samples respec-
tively, whereas false positive (FP ) and false negative (FN)
represent false classification for positive and negative samples
respectively.

hidden layer with fifteen neurons in the study. LM oc-
curs in a combination of gradient descent and the Gauss–
Newton method. For this reason, LM can be guaran-
teed as the solution in many cases [21]. In the scope of
choosing training algorithm, LM algorithm produced the
best results regarding the classification accuracy. On the
other hand, ANN was customized by means of training
parameters. Momentum decrease factor, momentum in-
crease factor, and maximum validation failures were set
as 0.15, 12, and 10, respectively. The training with these
parameters took place in less than thirty epochs, and it
occurred at an average of 2.236 s. The training time of
ANN takes longer according to other machine learning
algorithms, and this case constitutes a disadvantage for
the network. In summary, ANN with Se of 99.73% and
Sp of 97.94% values was superior to other machine learn-
ing algorithms.

Kernel-based algorithms have great generalization per-
formance for SVM. In the experiment, the linear,
quadratic, cubic, and Gaussian kernel functions have
been tested. Kernel was chosen as the Gaussian RBF.
Through trial and error, the sigma value was set as 3,
and the penalty factor was set at 0.5. According to ex-
perimental results, SVM performed quite well results as
Se of 99.21% and Sp of 97.02%.

As mentioned earlier, ELM can overcome limitations of
the traditional learning algorithms with better general-
ization performance, low computational process, and es-
pecially extremely fast learning ability [17, 18]. However,
the ELM structure has some drawbacks. For example,
the performance of ELM directly depends on the number
of hidden neurons. Also, ELM may encounter an over-
fitting problem in the case that the number of neurons
in the hidden layer is greater than the training set [12].
Therefore, the classification success and training time of
ELM were investigated depending on the number of hid-
den nodes. The number of hidden nodes was increased
gradually from 20 to 1000. Figure 1 shows that the clas-
sification success was grown until the number of hidden
nodes approached 200. Afterward, no significant change

Fig. 1. Performance values of ELM. (a) Obtained ac-
curacy versus the number of hidden nodes. (b) Training
times versus the activation functions and the number of
hidden nodes.

in the classification accuracy of ELM was observed. Con-
sequently, the number of hidden layer node was set at
200. In addition, the training time showed a leap at this
point. ELM was employed over fifty different times for
each hidden layer node change. Se and Sp values of ELM
were obtained as 96.34% and 95.30%, respectively.

RBFN consisting of one input layer, one hidden layer,
and one output layer is a special version of SLFN. The
experimental results pointed that this algorithm was the
best in terms of network training time. Se and Sp val-
ues achieved 96.83% and 88.49%, respectively, by using
RBFN.

RF also presented satisfactory results. The obtained
Se and Sp values were 99.07% and 93.31%, respectively.
In addition, the training time of the network was only
0.332 s. The performance results of all machine learning
algorithms are presented in Table III.
Se, Sp, GM, and F1 metrics have been calculated us-

ing confusion matrix. Bold values in Table III show the
highest value in each row.

4. Conclusions
Consequently, the widely used and efficient five ma-

chine learning techniques were examined on FHR classi-
fication task, and the network performances evaluated
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TABLE III

Performance results [%] of machine learning algorithms.

Metrics ANN SVM ELM RBFN RF
sensitivity (Se) 99.73 99.21 99.34 96.83 99.07
specificity (Sp) 97.94 97.02 95.30 88.49 93.31
geometric mean (GM) 98.83 98.10 97.29 95.56 96.14
F-measure (F1) 0.997 0.992 0.993 0.969 0.990
training time [s] 2.236 0.720 0.889 0.073 0.332

regarding several metrics (Se, Sp, GM , and F1) ob-
tained from confusion matrix. According to experimen-
tal results, ANN produced more efficient results (Se of
99.73% and Sp of 97.94%) than other machine learning
techniques. ELM was examined comprehensively. More
specifically, the tuning parameters, such as activation
functions and the number of node in hidden layers were
considered in a large range. The obtained results of each
classifier were compared to each other considering the
performance metrics. Although aforementioned machine
learning techniques produced rather good results, ANN
was revealed as the most effective algorithm.
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