The Electronic Structure
and Specific Heat of YNi$_4$Si

M. Pugaczowa-Michalska, M. Falkowski, A. Kowalczyk
Institute of Molecular Physics, PAS
M. Smoluchowskiego 17, 60-179, Poznań, Poland

M. Timko, M. Reiffers, M. Mihalik
Institute of Experimental Physics, SAS, Watsonowa 38, 043 53 Košice, Slovakia

J. Šebek and E. Šantava
Institute of Experimental Physics, Academy of Sciences of the Czech Republic
Na Slovance 2, 182 21 Praha 8, Czech Republic

The studies of the electronic structure and the specific heat of YNi$_4$Si are reported. Below the Fermi energy (E_F) the density of states contains mainly the 3d states of Ni, which hybridized with 4d states of Y and 3p states of Si. The theoretical electronic specific heat coefficient (12.32 mJ/(mol K2)) obtained for equilibrium lattice parameters and the experimental value (13 mJ/(mol K2)) are in a reasonable agreement.

PACS numbers: 71.20.Be, 71.20.–b, 65.40.–b

1. Introduction

In recent years ternary compounds RNi$_4$Si, containing the rare-earth metal (R), have been intensively studied [1–3]. These compounds have a variety of interesting properties such as a mixed-valence state of the Ce ion, a Kondo-like resistivity impurity in CeNi$_4$Si as well as a strong Mott-type scattering in resistance in YbNi$_4$Si [2, 3]. From the electronic structure point of view these compounds are of special interest due to the nearly filled Ni(3d) band implying that the Ni magnetic moment is negligible [1]. The YNi$_4$Si compound is indeed useful considered as the isostructural non-magnetic reference material. Therefore, it is important to characterize its ground-state properties such as electronic structure from \textit{ab initio} method and specific-heat experiments, which give information on magnetic properties and energy level distribution. The YNi$_4$Si belongs to a wide
class of compounds which crystallise in the hexagonal CaCu$_5$ structure (space group $P6/mmm$). In the CaCu$_5$ structure the Ni atoms occupy the crystallographic sites (2c) and (3g), while the rare-earth atoms are located in (1a) and Si atoms occupy (3g) sites.

2. Experimental details and calculation method

The electronic structure was calculated by using the tight-binding linear muffin-tin orbital (TB LMTO) method in the atomic sphere approximation (ASA) [4]. Details of calculation were the same as that for CeNi$_4$Si [1]. The sample preparation procedure for YNi$_4$Si is similar to that for CeNi$_4$Si [1]. The lattice constants are $a = 4.79$ Å and $c = 4.692$ Å (YNi$_4$Si). Specific heat measurements were performed by PPMS commercial device (Quantum Design) in the temperature range 4–300 K by relaxation method using two-τ model. The error of the measurement was about 2%.

3. Results

The electronic structure calculations for YNi$_4$Si have shown that its ground state is paramagnetic. The calculated densities of states (DOS) are shown in Fig. 1a. The DOS reflects a large separation of the low-lying bands and the main part of DOS (from -0.497 Ry to E_F) with respect to the corresponding band widths. Si 3s band is located deeply at the lower part of DOS [-0.73 Ry; -0.58 Ry] below the E_F. In the upper part of the DOS (above -0.497 Ry) 3d

![Fig. 1](image-url)
Ni states overlap with 4d Y states. The hybridization of Si 3p, Y 4d and Ni 3d levels results in continuous DOS from the energy of ~0.5 Ry to the Fermi energy. The band structure of YNi$_4$Si along selected high-symmetry lines within the first Brillouin zone (BZ) is shown in Fig. 1b. The shape of the lowest band is strikingly similar to that of CeNi$_4$Si [1]. The bottom of the lowest band of YNi$_4$Si, which consists entirely Si 3s states, has the parabolic shape around the Γ point of high symmetry in the $\Gamma-A$, $\Gamma-M$, $\Gamma-K$ direction (below ~0.7 Ry) as well as in the $A-H$ direction (below ~0.65 Ry). The group of bands formed between ~0.5 Ry and the E_F is mainly dominated by Ni 3d states mixed with Si 3p states. E_F is crossed in all main directions of the first BZ by the bands. The K, L, Γ, M points of high symmetry bands do not cross E_F. The DOS at E_F is 85.55 [st./(Ry f.u.)] for YNi$_4$Si. The electronic specific heat coefficient can be estimated from band calculations by using the relation:

$$\gamma = \frac{1}{3} \pi^2 k_B^2 N(E_F)$$

and is equal to 14.8 mJ/(mol K2).

The electronic specific heat of YNi$_4$Si, plotted as C_p/T versus T^2.

The temperature dependence of heat capacity C_p measured for YNi$_4$Si is presented in Fig. 2. The total heat capacity consists of two contributions: the electronic specific heat C_{el} characterized by the Sommerfeld coefficient γ and the phonon contribution C_{ph} which can be expressed as:

$$C_p = C_{el} + C_{ph} = \gamma T + \beta T^3.$$

The Debye temperature is estimated using the relation:

$$\Theta_D = \left(\frac{12 \pi^4 R n}{5 \beta} \right)^{\frac{1}{3}},$$

where n is a number of atom in the unit cell, R is the gas constant. The experimental values are: $\gamma = 13$ mJ/(mol K2); $\Theta_D = 388$ K. The value of γ obtained from electronic structure for experimental lattice parameters is somewhat higher than the experimental γ. However, minimization procedure of the total energy
of YNi$_4$Si gives the equilibrium lattice constants of $a = 4.551$ Å, $c = 4.41$ Å and value of $\gamma = 12.32$ mJ/(mol K2). Thus, the experimental value and the theoretical value of the electronic specific heat coefficient obtained at equilibrium lattice parameters are in good agreement. Moreover, the theoretical values of γ obtained for YNi$_4$Si in this work are close to the value of 11.33 mJ/(mol K2) determined for YNi$_4$B [6] and 13.42 mJ/(mol K2) determined for YNi$_4$Cu [5].

4. Conclusions

Ab initio calculation has shown that the YNi$_4$Si is paramagnetic. Below the E_F the total DOS contained mainly Ni 3d states in (2c) and (3g) positions hybridized with Y 4d states and Si 3p states which formed the main part of the valence band. The theoretical electronic specific heat coefficient is in good agreement with that obtained from experiments.

Acknowledgments

This work was supported partly by the COST-ECOM P16, by Science and Technology Assistance Agency APVT-51-031704, by VEGA6165; by the contract CE of SAS. J.S. and E.S. are grateful for support of GACR106/06/0368.

References

