Photoionization of He —
a Field Theoretic Approach

S. Bhattacharyya* and S. Mitra
Gokhale Memorial Girls' College, Calcutta, India

(Received March 5, 2001; revised version July 10, 2001)

The present paper deals with the field theoretic study of single ionization cross-sections σ_{ph} and σ_C of helium due to photoelectric effect and the Compton scattering, respectively, by photons of energy lying between 0–12 keV. In this energy range, σ_{ph} gradually decreases with energy while σ_C gradually increases. There is a crossover point around 6.5 keV where $\sigma_{ph} = \sigma_C = 10^{-24}$ cm2. Near about this crossover point σ_{ph} and σ_C curves are like mirror images. The ratio σ_C/σ_{ph} lies between 0.3 to 1.5 in the energy range under consideration. The present results are compared with existing theoretical results.

PACS numbers: 32.80.Cy, 32.80.Fb

1. Introduction

Morgan and Barlett [1], and Hino et al. [2] theoretically investigated single photoionization (SPI) by applying many-body perturbation theory (MBPT). Hino et al. [3] extended this approach to obtain cross-sections at high energies. There is also theoretical calculation by Andersson and Burgdorfer [4] on SPI by photoelectric effect (PEE). Most of the work done are related to the calculations of the ratio of double to single ionization by photon [3]. However, the calculations vary among themselves. Since there is still scope for theorisation, we have calculated here SPI of helium by PEE and the Compton scattering (CS) using field theory, Feynman diagram and covariant Lorentz gauge [5–8]. The Feynman diagram (Fig. 1) represents SPI due to PEE, where the high-energy photon interacts with the bound-electron cloud and ionizes it leaving only the He$^+$ ion in 1s-state. A change in the static correlation between the two bound electrons due to photon impact triggers the process of SPI. In the case of CS there are two Feynman diagrams (Fig. 2a and b)

*corresponding author; e-mail: sbgcme@cal2.vsnl.net.in
Fig. 1. Feynman diagram for photoionization. Double line represents bound electron, single line represents free electron, broken line represents Coulomb photon, wavy line with arrow represents photon.

Fig. 2. Feynman diagram for Compton scattering, the same as in Fig. 1: (a) direct scattering, (b) exchange scattering.

corresponding to direct and exchange interactions, respectively. Here along with the change in the static correlation between the two bound electrons, dynamic correlation through electron propagator between the bound and the corresponding outgoing electron come into play. In our calculations the cross-sections due to PEE gradually decrease with energy of the incident photon, while those due to CS increase. There is a crossover point near 6.5 keV, where cross-sections for both processes are the same. It is interesting to note that the Compton curve is mirror image of the photoelectric curve about this crossover point. Although the present σ_{ph} results deviate slightly from the existing theoretical results, a good agreement is obtained in the case of σ_C.

2. Mathematical formalism

2.1. Photoelectric effect

The reaction for SPI by PEE is

$$\text{He}(1s^2) + h\nu \rightarrow \text{He}^+(1s) + e.$$ \hspace{1cm} (1)

The amplitude for the process is obtained from Fig. 1 and is given by R_p [5]:

$$R_p = \int \bar{\psi}_1(r_1, r_2, R)\gamma_\mu A_\mu(r_1, k)\psi_1(r_1, r_2, R)d^4r_1d^4r_2dR,$$ \hspace{1cm} (2)

where γ_μ is the Dirac matrix and $A_\mu(r_1, k)$ is the wave function for transverse photon at r_1 with momentum k. r_1, r_2, and R are the four-coordinates of the two bound electrons and the nucleus, respectively. The initial wave function of the system of bound electrons in He atom is given by [5–7]:

$$\Psi_1(r_1, r_2, R) = \int \phi_{1s^2}(x, y) \frac{1}{(2\pi)^3} \frac{m}{b_{10}b_{20}} u(b_1, r_1)u(b_2, r_2)$$

$$\times \exp(iRL) \exp(ib_1r_1 + ib_2r_2)d^4r_1d^4r_2dR,$$ \hspace{1cm} (3)
where \(u(b_i, r_i) \) is the Dirac spinor for the bound electron with four-momenta \(b_i \) at the position \(r_i \) \((i = 1, 2)\). \(L \) and \(L' \) are the four-momenta of the nucleus in the initial and in the final state, respectively. The space coordinates of the electrons relative to the nucleus are

\[
x = r_1 - R, \quad y = r_2 - R, \quad (4a)
\]

\[
\Phi_{1s}(x, y) = \chi_{1s}(x)\chi_{1s}(y). \quad (4)
\]

For \(\Phi_{1s} \) we use the ground state correlated wave function of He atom as in [9]:

\[
\chi_{1s}(x) = Ae^{-z_1x} + Be^{-z_2x},
\]

\[
A = 0.7349, \quad B = 0.799, \quad z_1 = 1.41, \quad z_2 = 2.61. \quad (5)
\]

The final wave function of the system is

\[
\Psi_f(r_1, r_2, R) = \frac{1}{\sqrt{V(2\pi)^3}} \frac{m}{\sqrt{p_0 b_{20}}} u(p) e^{i(r_1 p)} \Phi_{1s}^{He^+}(y)
\times u(b_2 e^{i r_2 z_2} e^{i R L'}), \quad (6)
\]

\(L' \) is the center of mass momentum of the interacting system in the final state. \(E_p \) and \(P \) are, respectively, the relativistic energy and momentum of the outgoing electron. The transverse potential \(A_\mu(r_1, k) \) with photon polarization vectors \(\lambda \) and momentum \(k \) is given by

\[
A_\mu(r_1, k) = \frac{\lambda_\mu e^{ik r_1}}{\sqrt{2k_0 V(2\pi)^3}}. \quad (7)
\]

\(k \) is the four-momentum of the photon. On substituting (3)–(7) into Eq. (2)

\[
R_p = C \int \left[\bar{u}(p) \gamma_\mu \lambda_\mu u(b_1) \right] r_1 \left[\bar{u}(b_2) u(b_2) \right] r_2 e^{-i(r_1 p + r_2 b_2 + RL')} \times e^{-ik r_1} e^{i(k_1 r_1 + k_2 r_2 + RL)} \Phi_{1s}^{He^+}(y) \Phi_{1s}(x, y) \, d^4r_1 d^4r_2 d^4R. \quad (8)
\]

Since at equal time \(r_{10} = r_{20} = R_0 \), after equal-time integration Eq. (8) becomes

\[
R_p = C \lambda_\mu [\bar{u}(p) \gamma_\mu u(b_1)] r_1 [\bar{u}(b_2) u(b_2)] r_2 2\pi \delta(p_0 - k_0 - b_{10} + L' - L_0)
\times \int e^{-i(r_1 p + r_2 b_2 + RL')} e^{-ik r_1} e^{i(k_1 r_1 + k_2 r_2 + RL)}
\times \Phi_{1s}^{He^+}(y) \Phi_{1s}(x, y) \, d^3r_1 d^3r_2 d^3R, \quad (9)
\]

\[
C = \frac{1}{\sqrt{V(2\pi)^3}} \frac{m}{\sqrt{p_0 b_{20}}} \frac{m}{\sqrt{b_{10} b_{20}}} \frac{1}{\sqrt{2k_0 V(2\pi)^3}} \frac{1}{(2\pi)^3}.
\]

The product of the spinors are

\[
T_{p1} = \bar{u}(p) \gamma_\mu u(b_1), \quad T_{p2} = \bar{u}(b_2) u(b_2).
\]
With

$$T_p = T_{p1} T_{p2}$$ \hspace{1cm} (10)

we get

$$R_p = C\lambda_p T_p 2\pi \delta(p_0 - k_0 - b_{10} + L_0' - L_0) I_p,$$ \hspace{1cm} (11)

where I_p is the overlap integral

$$I_p = \int e^{-i(r_1.p + r_2.b_2 + R.L')} e^{-i(|r_1 + b_1 + b_2 + R|)} \times \Phi_{1,2}^{\text{inc}}(y) \Phi_{1,2}(x,y) d^3r_1 d^3r_2 d^3R.$$ \hspace{1cm} (12)

On substituting $r_1 = x + R$, $r_2 = y + R$, and integrating over x, y

$$I_p = (2\pi)^3 \delta^3(p - k - b_1 + L' - L) I_{ph},$$

$$I_{ph} = \left[\frac{64A^2 \pi^2 z_1}{(z_2^2 + t_{11}^2)^2(\alpha + z_1)^3} + \frac{8AB \pi z_1}{(z_2^2 + t_{11}^2)(\alpha + z_2)^3} \right. \left. + \frac{8AB \pi z_2}{(z_2^2 + t_{11}^2)(\alpha + z_1)^3} + \frac{64B^2 \pi^2 z_2}{(z_2^2 + t_{11}^2)(\alpha + z_2)^3} \right],$$ \hspace{1cm} (13)

where

$$t_{11} = L - L' = p - k - b_1.$$ \hspace{1cm} (14)

Knowing that $\lambda^2 = -1$, the square of the probability amplitude for PEE

$$|M_0|^2 = |R_p R^*_p| = C^2 [(2\pi)^4 \delta^4(P - k - b_1 + L' - L)]^2 I^2_{ph} T_p T^*_p.$$ \hspace{1cm} (15)

Again from Refs. [10, 11]:

$$[(2\pi)^4 \delta^4(P - k - b_1 + L' - L)]^2 = VT(2\pi)^4 \delta^4(P - k - b_1 + L' - L),$$ \hspace{1cm} (15a)

substituting

$$P_t - P_i = p - k - b_1 + L' - L,$$

$$E_t - E_i = E - k_0 - b_{10} + L_0' - L_0,$$

the transition probability per unit volume per unit time on using (15) and (15a) reads

$$W_\text{PPE} = \frac{|M_0|^2}{VT} = C^2 (2\pi)^4 \delta^4(P_t - P_i) I^2_{ph} T_p T^*_p$$

$$= C^2 \frac{1}{V^2 k_0} \delta(E_t - E_i) \delta^3(p - k) I^2_{ph} T_p T^*_p.$$ \hspace{1cm} (15b)

To determine the cross-section for SPI due to PEE we have to divide W_PPE by the flux of the incoming particles $|J_{inc}|$ and the number of target particles per unit volume.
1/V gives the latter, since the normalization of the wave functions was performed in such a way that there is just one particle in the normalization volume V. Furthermore, we have to sum (integrate) over the possible final states of the ionized electron and the final He⁺ ion to obtain the cross-section. The number of final states in the momentum interval \(d^3p d^3L'\) is

\[
V^2 \frac{d^3p}{(2\pi)^3} \frac{d^3L'}{(2\pi)^3}.
\]

The cross-section is now given by the sixfold integration

\[
\sigma_{ph} = \int \frac{1}{V} \frac{1}{|J_{inc}|} W_{nu} V^2 \frac{d^3p}{(2\pi)^3} \frac{d^3L'}{(2\pi)^3}.
\]

As the target atom is assumed to be at rest \(L = 0\) and the incident flux becomes [11]:

\[
|J_{inc}| = \frac{1}{V} |\mathbf{c}|, \quad \mathbf{c} = \frac{|\mathbf{k}|}{k_0} \text{ being the velocity of light.}
\]

This leads to

\[
\frac{1}{k_0 V |J_{inc}|} = \frac{1}{k_0 |\mathbf{c}|} = \frac{1}{|\mathbf{k}|} \tag{17}
\]

\(d^3L'\) in (16) is integrated over momentum \(\delta\)-function and we get

\[
\mathbf{L}' = \mathbf{k} - \mathbf{b}_1 - \mathbf{p},
\]

and we also use the relation [12]:

\[
d^3\delta(E_f - E_i) = \frac{|\mathbf{p}|}{(\partial E/\partial |\mathbf{p}|)} d\Omega = |\mathbf{p}| E d\Omega. \tag{17a}
\]

Knowing that

\[
b_1 = (b_{10}, 0), \quad b_2 = (b_{20}, 0), \tag{18}
\]

\[
T_p T^*_p = (T_{1p} T^*_{1p})(T_{2p} T^*_{2p}), \tag{19}
\]

where

\[
T_{1p} T^*_{1p} = [\bar{u}(p)\gamma_{\mu}u(b_1)] [\bar{u}(b_1)\gamma_{\mu}u(p)]. \tag{20}
\]

\[
T_{2p} T^*_{2p} = [\bar{u}(b_2)u(b_2)\bar{u}(b_2)u(b_2)],
\]

we get after calculating the traces in (19)

\[
T_p T^*_p = \left[1 - \frac{(m + E)(m - \varepsilon_{1a})}{m^2}\right] \left[\frac{(m - \varepsilon_{1a})^2}{m^2} + 1\right]. \tag{21}
\]

The cross-section for PEE (16) becomes on using (17), (17a) and integrating over d\(\Omega\):

\[
\sigma_{ph} = \frac{4\pi(2\pi)^3C_{nu}^2}{|\mathbf{k}|} \frac{1}{(2\pi)^6} T_p T^*_p \sigma_{ph} |\mathbf{p}| E. \tag{22}
\]
For small recoil momentum and small energy transfer to the ion we get from the energy δ-function $E = k_0 - \varepsilon_{1s}$:

$$
\sigma_{\text{ph}} = \frac{(4\pi)^2}{|k|} \frac{C_{\text{CS}}^2 T_p T_p^* r_{\text{pf}}^2 m \sqrt{2m (k_0 - \varepsilon_{1s})}}{(2\pi)^6}.
$$

(23)

Finally, the cross-section is obtained (Fig. 3) by assuming the recoil of the target to be very small: $t_{11} \approx 0$.

2.2. Compton scattering

The reaction for the process of SPI due to CS is given by

$$
\text{He} + \gamma = \text{He}^+(1s) + e^- + \gamma,
$$

(24)

which is represented by two diagrams (Figs. 2a, b). The second-order S-matrix R_{CS} for CS is given by current–current interactions. Contributions from the direct and exchange terms are, respectively, R_d, R_e, where

$$
R_d = [(J_{\mu}^\alpha)^\dagger r_1 A_{\mu}(k, r_1)][(J_{\nu}^\beta)^\dagger r_1' A_{\nu}(k', r_1')],
$$

(25)

$$
R_e = [(J_{\mu}^\alpha)^\dagger r_1 A_{\mu}(k, r_1')][J_{\nu}^\beta)^\dagger r_1 A_{\nu}(k', r_1)].
$$

(26)

The electron currents at r_1 and r_1' are given by

$$
(J_{\mu}^\alpha)_{r_1} = \overline{\Psi}(r_1) \gamma_{\mu} \Psi(r_1, r_2, R),
$$

(27)

$$
(J_{\mu}^\alpha)_{r_1'} = \overline{\Psi}(r_1', r_2, R) \gamma_{\mu} \Psi(r_1'),
$$

(28)

and the matrix element for SPI by CS is

$$
R_{\text{CS}} = R_d + R_e.
$$

(29)

(a) Direct term (Fig. 2a):

Using Eqs. (3)–(6) we write the following expression for the electron propagator between r_1 and r_1':

$$
\Psi(r_1') \overline{\Psi}(r_1) = S(r_1' - r_1) = \int \frac{e^{-i(s - m)(\delta + m) d^4 s}}{(2\pi)^4 (s^2 - m^2)}.
$$

(30)

The direct term (24)

$$
R_d = \int \overline{\Psi}(r_1', r_2, R) \gamma_{\nu} A_{\nu}(k', r_1') S(r_1' - r_1) \times A_{\mu}(k, r_1) \gamma_{\mu} \Psi(r_1, r_2, R) dr_1 dr_2 dR.
$$

(31)

After necessary substitution

$$
R_d = C_c T_d I_d,
$$

(32)

where I_d is the overlap integral, T_d is the product of the spinors and C_c is a constant,
\[C_c = \frac{1}{(2\pi)^4 \sqrt{2Vk_0'(2\pi)^3}} \]

\[I_d = \int \frac{1}{s^2 - m^2} \phi_{1s}\exp\{i[(r'_1p + r'_2b_2 + RL')] - kr_1 \]

\[-s'(r'_1 - r_1) + k' r'_1 - (b_1 r_1 + b_2 r_2 + RL')] \right] d^4r_1 d^4r'_1 d^4r_2 d^4s'. \]

After equal-time integration and integration over \(s' \) as in (11)-(13) we get

\[I_d = I'_d \frac{1}{s^2 - m^2} 2\pi \delta_0(p_0 + k'_0 - k_0 - b_1 + L'_0 - L_0), \tag{32a} \]

where \(s_t = p + k' \), and the overlap integral

\[I'_d = N(2\pi)^3 \delta^3(p + k' + L' - k - L) \]

\[\times \left[\frac{64A^2\pi^2 z_1}{(z_1^2 + \ell_1^2)(\alpha + z_1)^3} + \frac{64AB\pi^2 z_1}{(z_1^2 + \ell_1^2)(\alpha + z_2)^3} \right. \]

\[+ \left. \frac{64AB\pi^2 z_2}{(z_2^2 + \ell_1^2)(\alpha + z_2)^3} + \frac{64B^2\pi^2 z_2}{(z_2^2 + \ell_1^2)(\alpha + z_2)^3} \right] . \tag{33} \]

We substitute in the subsequent calculations

\[t_1 = p + k' - k, \quad l = L - L', \quad T_d = T_{d1}T_{d2}, \tag{34} \]

where

\[T_{d1} = \bar{u}(p)\gamma_{\mu}\lambda^\nu(s_t + m)\gamma_{\nu}u(b_1), \]

\[T_{d2} = \bar{u}(b_2)u(b_2). \tag{35} \]

Since for the polarisation \(\lambda^2 = -1 \), we get after calculating the traces

\[T_{d1} T_{d2} = [32(p \cdot s_t)b_{10}s_{10} - 16p_0b_{10}s_7^2 - 16m^2(p \cdot s_t) + 16m^2p_0b_{10} \]

\[-16m^2s_{10}b_{10} + 4m^2s_7^2 + m^4], \]

\[T_{d2} T_{d2} = \frac{b_2^2}{m^2} + \frac{1}{4}. \tag{36} \]

\[R_d = \frac{C_c T_d I'_d(2\pi)^4 \delta(E_i - E_f)\delta^3(P_i - P_f)}{s_t^2 - m^2} \tag{37} \]

and the square of the amplitude from direct term

\[R_d^2 R_d = \frac{C_c^2(2\pi)^4 \delta(E_i - E_f)\delta^3(P_i - P_f))^2 T_d^2 T_d I'^2_d}{(s_t^2 - m^2)^2}. \tag{38} \]
(b) Exchange term (Fig. 2b):

From (25) the exchange amplitude R_e is written as below:

$$R_e = \int \frac{1}{\sqrt{2^m - m^2}} \phi^{\mu+}(y)\Phi_1(x,y) \exp \{ i \left[(r'_1 p + r_2 + RL') + k' r_1 - s'(r'_1 - r_1) - k r'_1 - (b_1 r_1 + b_2 r_2 + RL) \right] \} d^4 r_1 d^4 r'_2 d^4 r_1 d^4 r_2 d^4 s' ,$$

$$T_{c1} = \overline{u}(p)\gamma_{\mu}(\delta_{c} + m)\gamma_{\nu}u(b_1) ,$$

$$T_{c2} = \overline{u}(b_2)u(b_2) = T_{c2} ,$$

and $T_c = T_{c1}T_{c2}$, the amplitude becomes

$$R_e = C_c T_c I_c .$$

After equal-time integration and integration over r'_1, r_1, R and s' we get

$$I_c = 2\pi\delta_0(p_0 + k_0' - k_0 - b_{10} + L'_0 - l_0) \frac{1}{s^2_c - m^2} I'_c ,$$

where $s_c = p - k$.

$$I'_c = N(2\pi)^3 \delta^3(P_1 - P_t) \left[\frac{64 A_2^2 \pi^2 z_1}{(z_1^2 + t_1^2)(\alpha + z_1)^3} + \frac{64 AB \pi^2 z_1}{(z_1^2 + t_1^2)(\alpha + z_1)^3} \right]$$

$$+ \frac{64 A_2 \pi^2 z_2}{(z_2^2 + t_1^2)(\alpha + z_2)^3} + \frac{64 B^2 \pi^2 z_2}{(z_2^2 + t_1^2)(\alpha + z_2)^3} ,$$

where $t_1 = p - k - b_1$.

Since $\lambda^2 = -1$, we get for the trace parts

$$T_{c1}^* T_{c1} = [32(p \cdot s_c)b_{10}s_{c0} - 16 p_0 b_{10}s_c^2$$

$$- 16m^2(p \cdot s_c) + 16m^2 p_0 b_{10} - 16m^2 s_0 b_{10} + 4m^2 s^2 + m^4],$$

$$T_{c2}^* T_{c2} = T_{d2}^* T_{d2} .$$

Finally, the square of the amplitude from exchange term becomes

$$R_e^2 R_e = \frac{C_2^2[(2\pi)^3 b(E_1 - E_t)\delta^3(P_1 - P_t)]^2 T_{c1}^* T_{c1} I'_c}{(s^2_c - m^2)^2} .$$
2.3. Cross-section

The total amplitude for SPI by the CS process is given by

\[|M_{\text{C}}|^2 = R_{d}^{*} R_{d} + R_{e}^{*} R_{e} + R_{d}^{*} R_{e} + R_{e}^{*} R_{d}. \] \hfill (47)

The interference of the direct and exchange term

\[R_{d}^{*} R_{e} + R_{e}^{*} R_{d} = 2 R_{d}^{*} R_{e}, \]

where

\[R_{d}^{*} R_{e} = C^{2} \left[(2 \pi)^{3} \delta^{3}(P_{f} - P_{i}) \delta(E_{f} - E_{i}) \right]^{2} \frac{T_{d}^{*} I_{d}^{*}}{s_{1}^{2} - m^{2}} \frac{T_{e} I_{e}}{s_{e}^{2} - m^{2}}. \] \hfill (48)

Again from (34) and (40)

\[T_{d}^{*} T_{e} = [T_{d1}^{*} T_{e1}] [T_{d2}^{*} T_{e2}], \] \hfill (49)

\[T_{d1}^{*} T_{e1} = \frac{1}{4m^{2}} [ps_{d}(16b_{10}s_{60} - 8m^{2}) + ps_{e}(16b_{10}s_{60} - 8m^{2})] + s_{d} s_{e} (4m^{2} - 16p_{b_{10}}) + 16m^{2} p_{b_{10}} - 8m^{2} s_{d0} b_{10} - 8m^{2} s_{e0} b_{10} + 4m^{4}], \]

\[T_{d2}^{*} T_{e2} = \frac{b_{0}^{2}}{m^{2}} + \frac{1}{4}. \]

The transition probability per unit volume per unit time is

\[W_{\text{C}} = \frac{|M_{\text{C}}|^2}{VT}. \]

The cross-section for single ionization by the Compton scattering is given as in (16) by

\[\sigma_{\text{C}} = \int \frac{1}{V} \frac{1}{|\mathcal{J}_{\text{inc}}|} W_{\text{C}}^{\text{C}} V_{\text{C}}^{2} \frac{d^{3}k'}{(2\pi)^{3}} \frac{d^{3}p}{(2\pi)^{3}}. \] \hfill (50)

Integration over \(k'\) is done using momentum \(\delta\)-function. Here we made use of (15a), (15b) and (17). The total cross-section is plotted in Fig. 3. In Fig. 4, ratio of the cross-sections by CS and PEE is shown.

3. Results and discussions

In this paper we have obtained single ionization of helium due to photoelectric effect and the Compton scattering in the energy range 0.1 keV to 12 keV. Results are compared with the existing theoretical calculations [2, 4]. A comparative study of the two processes shows that in the energy region 0.5 keV, \(\sigma_{\text{ph}}\) dominates the ionization process over \(\sigma_{\text{C}}\) (Fig. 3). This is also found in the theoretical work of Hino et al. [2]. Beyond that energy \(\sigma_{\text{C}}\) is greater than \(\sigma_{\text{ph}}\). We have calculated single photoionization cross-section by PEE for helium from diagram (Fig. 1). It is a first-order process in which one of the bound electrons escapes due to a change in the static correlation between bound electrons by interaction with

photon, while the second electron remains bound with the helium ion in 1s-state. In the Compton scattering the Feynman diagrams are of second order and con-
sist of direct and exchange diagrams. Physically CS is caused by change in static correlation along with the dynamical correlation between the bound and the ionized electron through photon propagator. Contributions from the direct and the exchange diagrams are small compared to the contribution from the interference term between the direct and exchange processes. The energy range of incident photon is 0.2–12 keV. In the case of photoelectric effect the cross-section asymptotically decreases with energy as in the case of Hino et al. [2]. Present value for σ_{ph} up to about 5 keV is slightly below that of the existing theoretical value (Fig. 3), while the present result above 5 keV remains slightly greater than the existing result. In the case of σ_{C}, the present result almost agrees with the existing calculation (Fig. 3). However, σ_{C} rapidly increases with energy in the low energy region and the rate of increment becomes slow as energy increases from 7–12 keV. At about 6.5 keV both the processes give similar contribution and beyond that energy the rate of increase in σ_{C} and rate of decrease in σ_{ph} are almost identical. It is interesting to note that the Compton curve is a mirror image of the photoelectric curve about this crossover point. The ratio of the ionization cross-sections (Fig. 4) by the Compton effect to that by photoelectric effect gradually increases with energy of the incident photon. Near 4 keV it is almost 0.4 while near 6.5 keV it is almost 1. Beyond 7 keV the ratio increases and becomes 1.4 near about 12 keV. In the high energy limit the Compton scattering dominates the ionization process.

4. Conclusion

In single ionization by the Compton scattering a part of the energy $K_0 - \varepsilon_{1s}$ is carried away by photoelectron and the remaining part by scattered photon, while in the photoelectric effect most of the energy $K_0 - \varepsilon_{1s}$ is carried away by photoelectron. Hence looking to the energy spectrum of the electrons one may diagnose which of the processes PEE and CS are involved in producing SPI in He.

In conclusion we find it most encouraging that this compact yet simple QED formulation can elegantly explain single photoionization by photoelectric effect and the Compton effect. The formulation of this photon–atom collision problem in a gauge-invariant language, which is similar to those describing most of the fundamental interactions in nature, has its own intrinsic appeal.

Acknowledgments

The work is supported by UGC, New Delhi through the project no. F10-17/98(SR-1).
References