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First, a simple semiclassical approach has been applied to the problem of
a quantum phase acquired by an electron carrying both the charge and spin,
which travels in an electromagnetic field. Basic hypothetical devices whose
operation relies on the quantum interference, including spin-related inter-
ference, are discussed in the following. Finally, experimental results demon-
strating two-beam interference in a planar quantum dot are presented.

PACS numbers: 73.23.—b, 85.30.De

1. Introduction

The concept of quantum interference transistor (QUIT) has been considered
in the literature since more than one decade [1-4]. In conventional field effect
transistor (FET) an applied gate voltage modulates the source—drain current by
varying the carrier concentration in the conduction channel. Instead, in the origi-
nal version of QUIT the current is modulated owing to the interference of electron
waves passing through two continuous channels by the application of a gate voltage
that differentiates the quantum phases in the channels. The necessary condition
of the interference 1s preservation of quantum phase coherence along alternative
electron trajectories up to the point of their recombination. Inelastic scattering
destroys the phase coherence and this limits the coherence length of electrons in
semiconductors usually to several hundreds of nanometers at liquid helium tem-
peratures.

QUITs have been expected to exhibit several advantages, such as very lit-
tle power dissipation and a high speed of operation. Unfortunately, a little fault
tolerance excludes QUIT as a candidate for a successor to FET. Nevertheless, one
observes now a reviving interest in the quantum-interference devices [5, 6] mainly
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in the context of the electron’s spin that could be used, in addition to electron’s
charge, in future nanoelectronics. This paper presents a brief survey of the sub-
ject, which includes a few novel results and pays an attention to the spin-related
interference devices.

2. Quantum-mechanical phase

Probability amplitude in quantum mechanics is given by a complex num-
ber that can be written in an exponential form whose argument, ¢, is called the
quantum-mechanical phase. In semiclassical approximation the phase ¢ acquired
by an electron traveling along a given trajectory expresses itself through the clas-
sical action S, and the Planck constant h = h/27, as

S 1

where [ is the Lagrangian of the electron (being an explicit function of the elec-
tron’s position and velocity), and the integration is performed over traveling time.
It should be emphasized that the semiclassical approximation gives exact results
in regions where the electron is subject to the effect of a constant potential, and
only such cases will be considered in this paper.

In classical mechanics the Lagrangian equals kinetic minus potential energy,
L =T —U, whereas in electrodynamics it contains an additional term, —e A v, that
is due to the interaction of a traveling electron with the vector potential A of a
magnetic field. Therefore the Lagrangian can be written as

2
L:T—U—eAv:%—i—eV—eAv, (2)

where m, —e, and v denote respectively the electron’s effective mass, charge, and
velocity. Here, —eV is the electrostatic potential energy, where V' stands for the
scalar potential of an electric field.

We can also take into account the spin of the electron, in a phenomeno-
logical approach, by including into the potential energy additional terms —pB +
(v x E)/2¢2 = —pBeg, where c is the velocity of light. Here, —p B is the energy
of interaction of the magnetic moment g with the magnetic field of the induction
B, and pu(vx E)/2c? is the energy of relativistic interaction of a traveling magnetic
moment p with the electric field E (including the so-called Thomas precession),
which is called the spin—orbit interaction. Within this approximation the gener-
alized Lagrangian of an electron traveling in an electromagnetic field takes the
following form:

mu? (vx E)

L= —|—eV—eAv—|—uB—“
2¢2

(3)

It 1s frequently convenient to introduce into this expression the total energy of
an electron W = T+U. In asystem being very close to equilibrium the total energy
of an electron at the Fermi energy may be assumed to be constant throughout
the system. Then, integrals of the type [IWdt are identical for all alternative
trajectories and thus their contribution to the resulting phase difference cancel.
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When a traveling electron is subject to an effective magnetic field Beg, which
is not uniform, and the electron’s spin follows adiabatically direction of the mag-
netic field, then the electron acquires an additional geometrical Berry phase [7].
Upon returning the vector Beg to its original direction during electron traveling,
the electron acquires a geometrical phase given by half the solid angle subtended
by Beg with a sign depending on the spin sense.

3. Aharonov—Bohm interferometer

A prototype of quantum-interference transistor is the so-called Aharonov—
Bohm (AB) interferometer. It represents a conducting ring of mesoscopic size,
which is supplied with two current leads at opposite points of ring periphery. This
is a doubly connected conductor that contains two separate branches linking a
source of electrons to their drain (Fig. 1). Tt is assumed in the following that
each branch represents a quasi-one-dimensional conductor (quantum wire) with
only single transversal mode propagating in it. Moreover, it is assumed that the
conduction is due to electrons at the Fermi level, and that the electrons travel
ballistically.

source drain

I gate

Fig. 1.  Aharonov—Bohm ring with a gate attached capacitively to one of its branch.

An electron emanating from the source has two alternative trajectories to
reach the drain. When the two branches of the ring are identical then the interfer-
ence at the drain is constructive. Differentiation of the quantum-mechanical phases
in these branches can be achieved by either magnetic field or electrostatic potential.
Having in mind device applications it is preferred to control the interference by
an electrostatic potential. Therefore, the famous magnetostatic Aharonov-Bohm
effect [8] will be excluded from the present considerations. Instead, we will refer
to the electrostatic AB effect in which the quantum phase can be controlled by
a scalar potential. Such a device, in which an external voltage is applied to a
gate that is capacitively coupled to one branch of the AB ring, has been indeed
proposed in the literature [1, 3]. We have shown, however, that operation of such
device would be rather doubtful because of a quantum-mechanical limitation [9].

In fact, when a moderate voltage is applied to the gate, its primary result
is the field effect owing to which the ring segment underneath the gate becomes
charged. When the gate potential is positive, this charge is carried by incoming
electrons that occupy empty quantum states of the wire. This charge defines,
through the density of states in the wire, a change in the potential of the segment
whose length is [. The resulting phase difference at the drain can be written as
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Ay = Akpl, where Ak denotes a change of the Fermi wave number in the segment
underneath the gate caused by the induced charge. One may write a formal relation

dE(k) dn(E)\ "
Ap = Akpl = | ——= N 4
o= Aty = (L5 Ty, ()
where E(k) is the electron energy as a function of its wave number, and N is an
average number of the electrons induced in one branch of the ring. The second
factor in the parenthesis represents the one-dimensional density of states that 1s
just proportional to the reciprocal of the first factor

dn(E) 2 (dE(k))‘l . (5)

dE 7 dk
Inserting Eq. (5) into Eq. (4), one gets
A@:%N. (6)

It is seen that already a single electron charge induced results in an essential
phase difference, Ay = /2. Variation of the charge by a quantity —2e alters the
constructive interference into the destructive one and vice versa. It means that the
electrostatic AB interferometer belongs in fact to the category of single-electron
devices.

Such a device will suffer from charge fluctuations that appear on the gate—wire
capacitor. Those fluctuations, well known in the physics of single-electron phenom-
ena in solids, can be of either thermal or quantum-mechanical origin. In order for
the electric charge on the capacitance C' to be defined with an accuracy better
than e, against a background of thermal and quantum fluctuations, the following
inequalities had to be fulfilled, respectively:

e? o T h

°C > kgl, R> =k (7)
Here, T" is the temperature, kp is the Boltzmann constant, and R is the resistance
through which the capacitance C'is charged. In principle, the thermal fluctuations
can always be reduced below an arbitrary level by lowering the temperature. In-
stead, the quantum fluctuations cannot be avoided because the second inequality
in Eq. (7) can hardly be fulfilled in the considered case.

4. T-shaped structure

Instead of the AB ring, one can use a T-shaped structure (being an analog
of the microwave T-junction) that has been first proposed by Sols et al. [2] and
Datta [3]. Tt is a mesoscopic structure that consists of a conducting longitudinal
arm linking the source of electrons to their drain, which is coupled to a transverse
arm of a length [ (Fig. 2). The transverse arm is terminated with the Schottky
gate and thus a voltage applied to the gate can control its length. Variation of this
length tunes the quantum-mechanical transmission between the source and drain.

The reason is that amplitudes of the electron wave functions in the transverse
and longitudinal arms must fit at the junction. There are incident and reflected
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source drain
A

gate

Fig. 2. T-shaped structure with gate-controlled length of the transverse arm.

waves running in the transverse arm, which combine into a standing wave whose
one node 1is located at the arm’s terminal. When the second node is located at the
junction, i.e. when &kl = mn (n = 1,2,3...), the amplitude of a running wave in
the longitudinal arm must be zero and then, the device conductance also is zero.
Instead, the conductance reaches a maximum when an arrow of the standing wave
appears at the junction, i.e. when kl = n(n — 1/2).

Such a device could be electrostatically defined in a two-dimensional elec-
tron gas (2DEG) of a GaAs-based heterostructure using the split-gate technique.
If the arms represent quasi-one-dimensional conductors, the switching between
conducting and blocking states of the device requires a change in the length of
the transverse arm by a quarter of the Fermi wavelength that is typically 40 nm.
We have estimated the gate voltage required to switch the device, taking into ac-
count the experimentally found magnitude of the lateral shift of the depletion-layer
boundary per unit gate voltage (see Sec. 8), to be about 100 mV.

5. Spin-related interference

The spin of electron brings into Lagrangian the term peBeg, where the ef-
fective magnetic field Beg includes both an external magnetic field and an ap-
parent magnetic field experienced by the traveling electron in the presence of a
transverse electric field. Each of these two contributions results differently in the
energy splitting between spin-up and spin-down states (for which projection of the
spin angular momentum is respectively parallel and antiparallel to Beg) (Fig. 3).
Semiclassically, a spin-related phase 1s connected with the Larmor precession of

~
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Fig. 3. (a) Zeeman splitting in an external magnetic field, (b) Rashba’s spin-orbit

N\ E(k) 1

splitting.
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spin magnetic moment around the effective magnetic field direction. The Larmor
frequency, wi, = gupBegr/2h, where ¢ is the Lande g-factor, and up is the Bohr
magneton, defines the resulting splitting energy, 2hwr,. In order for the interfer-
ence to be dominated by a spin contribution, the splitting energy should exceed
the Fermi energy, which usually requires applying very strong magnetic fields.

The situation would become more plausible if to exploit diluted magnetic
semiconductors (DMS) that exhibit a giant Zeeman splitting. Unfortunately, DMSs
contain a high density of magnetic ions, whose presence could dramatically reduce
the electron phase-coherence length due to the inelastic spin-flip scattering.

An alternative way to obtain a large Zeeman splitting in a 2DEG is to use hy-
brid ferromagnet—semiconductor structures in which micromagnets are deposited
on the top of a semiconductor heterostructure and whose stray field penetrates
the active region of the device.

Finally and fortunately, one can also exploit the spin—orbit coupling, which
will be discussed in Sec. 7.

6. Spin filter

Consider now the Zeeman splitting due to external magnetic field. It results
in a differentiation of the wave numbers of conduction electrons with opposite spin
orientations. The new wave numbers of electrons at the Fermi level, k¢, k|, are
given by the relation

Ky, gpnB ®)
2m 2
where Ef is the Fermi energy in zero magnetic field, and the signs + correspond
to the spin-up and spin-down states. This effect allowed us to propose a novel
quantum-interference device that might be called the spin filter, which is based on
the T-shaped structure.
Namely, because electrons with opposite spin polarizations have different

F =

Fermi wavelengths, one can so adjust the magnetic induction, B, and the trans-
verse-arm length, [, that the device will only transmit electrons with one definite
spin orientation. To reach this goal one should assure at the junction simultane-
ously a node for one wavelength and an arrow for the other, i.e. k4 = 7n and
kil = m(n —1/2). This requirement leads to the following relations:

h n 1
BI? = (ﬁ_1)— kpl=m (02— 2 43
g (7 L i - (9)
where kp is the Fermi wave number in zero magnetic field. From Eq. (9) we find,

for instance, that for 27 /kp = 40 nm, ¢ = 2, and n = 3 a 100% spin filtering would
be reached at { = 0.7 ypm and B =2.5x 1073 T.

7. Device with spin—orbit coupling

Recently, an attractive possibility of manipulating the spin—orbit interac-
tion, in order to control the quantum-mechanical phase, has been revealed. It has
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been established that in 2DEG appearing in narrow-gap semiconductors a con-
siderable energy splitting between spin-up and spin-down states occurs even in
zero magnetic field [10-12]. This effect, known as the Rashba spin—orbit split-
ting [13, 14], arises from interaction of a traveling spin magnetic moment with a
perpendicular electric field that exists at heterostructure interface. The splitting
energy is commonly written as 2kpa, where the coefficient « is proportional to the
expectation value of the electric field at the interface. In several narrow-gap semi-
conductor systems containing quantum well o has been found to be of the order
of 107 eV m. Moreover, it has been shown that a gate voltage can effectively
control this coefficient [12]. In particular, Nitta et al. [10] have shown that in an
inverted Ing 53Gag a7As/Ing 52Alg asAs quantum well a change of the gate voltage
from +1.5 V to =1 V enhances the spin—orbit coupling coefficient « from 0.65 to
1.05 x 10~ eV m.

source drain

Fig. 4. Aharonov-Bohm ring in which a uniform spin—-orbit splitting is controlled by
a gate voltage.

Basing on this finding, Nitta et al. [5] have proposed a spin device that
would work without any external magnetic field. It represents an AB ring in which
a gate electrode covers the whole ring area (Fig. 4). A voltage applied to the gate
varies the spin—orbit splitting uniformly in the ring. Electron waves, which follow
alternative trajectories in upper and lower branch of the ring, recombine at the
drain with opposite wave vectors. Therefore, they contribute to the Lagrangian
with different signs and thus give rise to a phase difference

TRopup _ iQﬂ'Ram’ (10)

Ap==+ =7 =

where R is the ring radius, and the signs &+ correspond to opposite spin orientations.
Taking into account the experimental values of «, one finds by Eq. (10) that in
AB ring with R = 0.3 um a gate voltage of the order of 1 V would assure 100%
conductance modulation.

It 1s worth noting that the phase difference is here independent of the electron
wave number, which means that contributions from different propagating modes
in a multimode interferometer would sum to a net interference effect. It should be
also added that because an apparent magnetic field has here the radial orientation
an electron would acquire a geometrical Berry phase, which however does not enter
into the resulting phase difference.
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8. Two-beam interference in a planar quantum dot

The above considerations are to be completed with presentation of some of
our experimental results, which — although do not concern directly the systems
discussed before — are very instructive. OQur experiment was performed using an
open quantum dot defined electrostatically in a 2DEG accumulated at the interface

y (b)

/

Fig. 5. (a) Secondary-electron image of the quantum dot, (b) main trajectories of bal-
listic electrons.

of an Alp 3Gag 7As/GaAs modulation-doped heterostructure [15]. Metal Schottky
gates deposited on the top of the heterostructure defined a square quantum dot of
a lithographic size 0.8 x 0.8 um? (Fig. 5a). Small openings in front and back gates
of the dot acted as the entry and exit ports for electrons.

We measured the conductance through the dot as a function of the potential
difference between opposite side gates, keeping the sum of these potentials con-
stant. Typical result obtained at the temperature 4.2 K is shown in Fig. 6 where
five oscillation cycles of the conductance are seen. After applying a weak mag-
netic field normal to the 2DEG sheet, positions of the oscillation cycles displace
themselves along the voltage scale.

These results are explained as follows. Some of the electrons entering the
dot follow the straight-line trajectory that links directly the entry with the exit
(Fig. 5b). This trajectory contributes dominantly to the conductance. Other en-
tering electrons are diffracted to directions considerably away from this trajectory
and undergo specular reflections at dot boundaries. Among them one can distin-
guish two symmetric trajectories, which undergo a single reflection at opposite side
walls before recombination at the exit. They subsequently contribute to the con-
ductance. Interference between partial waves following these trajectories is tuned
by the potential difference applied to the side-wall gates, which differentiates the
lengths of these trajectories. Magnetic field applied normal to the dot plane changes
the interference pattern owing to the magnetostatic AB effect.
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Fig. 6. Conductance oscillations in the dot as a function of the potential difference ap-
plied to the side gates. In the inset: displacement of conductance maxima with magnetic

field.

This experiment shows that a gate voltage can indeed control the electron
interference in a planar structure. From the period of the conductance oscillations
we have found the lateral shift of the depletion area boundary per unit gate voltage

to be & 0.1 pm/V.

9. Conclusions

To operate at reasonable temperatures the dimensions of quantum-inter-
ference devices should be reduced down to the quantum length scale, which is
determined by the Fermi wavelength (typically 40 nm for a 2DEG in GaAs).
Structures with this length scale could be fabricated using the present time epi-
taxy and lithography. Unfortunately, a little fault tolerance seems to constitute an
insuperable barrier for a wide application of such devices.

However, spin-related interference devices might find a niche in the emerg-
ing branch of electronics that is called spintronics. Those devices would have an
advantage over other spin-related devices, which have been considered by now,
since they do not need injection of spin-polarized electrons. New ideas concerning
spin-related interference devices are still expected.
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