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We study the evolution from BCS to Bose limit in a two-dimensional
d-wave superconductor at zero temperature and low density of charge carri-
ers within the mean-field theory. We examine single quasiparticle properties
when particle density and attraction strength are varied. For sufficiently high
interaction strength there is a critical density below which the system has a
gap. The spectral and thermodynamic properties of the system do not evolve
smoothly from the BCS-like to the Bose-like regime.

PACS numbers: 74.20.—z, 74.25.Gz, 67.40.Db

1. Introduction

The problem of the evolution from BCS to Bose superconductivity is an old
one [1, 2] but recently it has received considerable attention in connection with
high temperature superconductors [3—12]. While the effect of d-wave pairing on the
opening of a pseudogap above T, was discussed in the literature, there was a lack
of detailed studies of the ground state properties in the intermediate regime. It is
well known that the s-wave system exhibits a smooth crossover between the weak
and strong coupling regimes. However, pairs with non-s-wave symmetry cannot
contract in real space to point bosons due to finite angular momentum of the pairs.
Thus one may expect d-wave systems to behave in a qualitatively different way
from their s-wave counterparts as the bosonic limit is approached. Here we discuss
the single quasiparticle properties (excitation spectrum, momentum distribution,
and density of states) as a function of attraction strength or particle density.

The weak coupling (BCS) limit is characterized by a positive chemical po-
tential p = er and a large size of Cooper pairs (€pair > k;l), while the strong
coupling (Bose) regime is characterized by a large and negative chemical potential
0= —El(f), where El(f) is the binding energy of the two-body problem in the ¢-th
angular momentum channel, and by a small size of pairs (Epair < kb?l)
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2. The model

We start with the two-dimensional Hamiltonian

H=> extl,tuo+ > Virbl,beg, (1)

ko kk'g
where by = ¥_gyg/2)Vk+q/21- The interaction potential Vig is expanded in an-
gular momentum components as Vig = Z:Oioo Véi), exp(ilggr'), where
Ok = arccos(ic . l%/) is the angle betwen the vectors k and % and
Véi), =27 fooo drrJy(kr)Jo(k'r)V (r). The index £ labels angular momentum states
in two spatial dimensions, with £ = 0,%1,42,... corresponding to s,p,d,...

channels respectively. A possible choice of the real space potential is V(r) =
ViO(R1—r)—VoO(r— R1)O(Ro—r), which is repulsive at short distances r < R,
attractive at intermediate distances Ry < r < Ro, and vanishes for r > Ry.

Generally, it is not possible to find a separable potential in momentum space
Vir = —Aw*(k)w(k’), nevertheless in the spirit of Ref. [2] we choose to study a
separable potential that contains most of the general features described above. We
consider only singlet superconductivity, where the s-wave and the d-wave channels
are studied separately. We use potential of the form Vig = —Aowe(k)w,(k'). The
interaction term wy(k) can be written as a product of two functions, w.(k) =
he(k)ge(k), where ho(k) = (k/k1)/[1 4 (k/ko)]*T'/? controls the range of the
interaction and gg(ic) = cos({¢) is the angular dependence of the interaction. Here
ko ~ Rgl and ky sets the scale at low momenta. We assume that pairing at 7= 0
occurs with the same total momentum ¢ = 0 only. This simplification leads to the
following saddle point and number equations:

A 2F,(k)

k

n= QZW(/@),

where ng(k) = [1 — (ex — p)/E¢(k)]/2 is the momentum distribution, F,(k) =
[(ex — p)? + |Au(k)]?]*/? is the single particle excitation energy, and A.(k) =
Agewe(k) is the order parameter. For a given interaction range Ry ~ ko_l, the
transition from the BCS limit (largely overlapping pairs) to the Bose limit of
(weakly overlapping pairs) may occur either by changing the attraction strength
A¢ or the density n. In either case, this evolution can be safely analyzed with the
approximations used here provided that the system is dilute enough, i.e., n < kZ.
This means that below a maximum density nmax ~ k% max the Interaction range Ro
i1s much smaller than the interparticle spacing kb?rlnax, Ry K kb?rlnax, or equivalently
ko/kFmax > 1. Thus we choose to scale all energies with respect to the maximum
Fermi energy €f max, which fixes the maximum density n = nmax = 20€F max, and
all momenta with respect to krmax = v/2meF max. The coupling constant is scaled
with respect to the two-dimensional density of states p. From now on we use this
scaling.
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3. Results

Numerical solutions for Ay, and p, when ky = kg = 10 are shown in Fig. 1
for fixed density n = 1, and changing A,. Similar plots can also be made for fixed
interaction and varying density n. In the weak coupling limit the amplitude of the
order parameter (¢ = 0) is given by

Ag(hp) ~ eXP{Q[’\Ezl(ku) - ’\z_l]/hg(ku)}“

With our choice of he(k), Apa(ky) == 8 + p/24e1 + O[(p/e1)?], valid for p/er < 1,
where €1 = k% The ratios between Az(ku) and the critical temperature T¢, satisfy
the usual relations A, (k,)/Tcs = 1.76, and Ag(k,)/Teqa = 2.14. The parameters
Apg and p have continuous first derivatives and discontinuous second derivatives
as a function of A4. This behavior always occurs when g = 0 in both Agg and p,
for varying interaction Agq (see Fig. 1) or varying density n.
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Fig. 1. (a) The order parameter Aq and (b) the chemical potential x as a function of

coupling at fixed density » = 1 and k1 = ko = 10 for both s- and d-wave channels.
In the d-wave case Ag(A) and p(X) have continuous first derivatives and discontinuous
second derivatives at g = 0.
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We first look at the single quasiparticle excitation spectrum Eq(k). For p > 0,
including the BCS limit, the excitation spectrum is gapless at k, along the special
directions ¢ = +7/4, £37 /4, near which the excitation spectrum disperses linearly
with momentum. The energy gap at k = k, and ¢ = 0, Eg(k,) = |Aa(ky)| is a
nonmonotonic function of k, for fixed density, and thus a nonmonotonic function
of Ag. The maximum Fg4(k,) is reached at intermediate values of y > 0. At u =0,
the minimum gap is Fg(0) = [A4(0)] = 0, and occurs at the single point k = 0.
In this case the excitation spectrum is E4(k) = (3 + |Aq(k)|?)'/?, which behaves
quadratically for small momenta at any given angle ¢, since Ag(k) ~ k? cos(2¢)
and g = k?/2m. The shrinking of the energy gap to zero at k = 0 is a consequence
of the diminishing pairing interaction hq(k,) for 4 — 0. As soon as p < 0, including
the Bose limit, a full gap in the excitation spectrum appears, but the minimal gap
remains at k=0, Fg(0) = |p|, since Ag(0) = 0, see Fig. 2 [3].
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Fig. 2. Energy gap as a function of momentum along the direction ¢ = 0; k1 = kg = 10.

Figure 3 shows the lines where g = 0 on the graph of n vs. Ay. The low
density limit of the s-wave system is always Bose-like, i.e., a two-body bound
state appears at arbitrarily small A;. The d-wave system is qualitatively different:
it 1s BCS-like for Ay < A.q and Bose-like for Ay > A.q, where the critical coupling
Ac separating the two regimes is finite, i.e., the appearance of a two-body bound
state in the d-wave case requires finite Ag.

Let us briefly discuss the behavior of the momentum distribution at low &
for three different regimes: g > 0, g = 0, and g < 0. For positive p the mo-
mentum distribution is n,(k, + 6k) ~ [1 — 2k,6k/A(k,)]/2 near k,. At low k,
however, ny(k) =~ [1 + (1 + ak/2ko)]/2, where v, = p/\/p?>+ A3, and
a = A2/(p? + AZ). For p = 0 and small k, ng(k) ~ (1 — k?/Aps)/2. For neg-
ative p, ngs(k) = [1 — v (1 + ak/2ko)]/2 for small k, with v, = |p|//u? + AZ,.

Obviously, n,(k) is a continuous function of u for all &.
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Fig. 3. The line g = 0 for both s- and d-wave order parameters for k1 = ko = 10.

The momentum distribution in the d-wave case has the form
ng(k) = [1 —sgn(k? — p)] along the direction of the nodes (¢ = Fx/4, £37/4).
Near k, we have ng(k, + 6k) ~ [1 — 2k,6k/As(k,)]/2, for k close to k,, and
ng(k) ~ 1 — (AZ,/p*)(k*/4k?) for small k. When p vanishes, at k = 0 is
ng(0) ~ (1—£)/2, where k = (1+A2,/k$)~'/2. Finally, when y becomes negative,
ng(k) ~ (A3,/p?)(k*/4k?) for small k. The discontinuity of nq(k) at 4 = 0 and
low k, see Fig. 4, coincides with the collapse of the four Dirac points to a single
point at k, = 0, and with the appearance of a full gap as soon as ¢ < 0. Similar
behavior of ng(k) was also found recently in Ref. [13, 14] for a lattice model with
attractive interaction of nearest-neighbor particles.

The qualitative changes in F,(k) and ny(k), as a function of p, affect sub-

stantially the quasiparticle density of states Ny(w) = NZ(-I_)(W) + NZ(_)(W), where

NEPw) = m) [ @I = n (86l - Bi(b] (4)
corresponds to adding a quasiparticle, and
‘M”QQ:QﬂA/H%W%MW+m%H (5)

corresponds to removing a quasiparticle. At low frequencies Ng(w) changes dis-
continuously from linear in w for p > 0, where E4(k) is linear in momentum close
to the nodes, to a constant at g = 0 (where E4(k) o< k? at low k), to zero for
p < 0 (where E4(k) ~ |p| + O(k?) for small k), as can be seen in Fig. 5. In the
calculation of the density of states we have neglected the effects of quasiparticle
lifetimes®. The lack of particle-hole symmetry seen in Fig. b is a general property

*These lifetime effects come from quantum fluctuations which introduce self-energy cor-
rections to the single quasiparticle propagator. The self-energy corrections originate from
quasiparticle—quasiparticle and quasiparticle-quasihole interactions and are quite important in
the high density limit (n ~ kg), however at low densities (n < kg, the only situation discussed
in this manuscript) lifetime broadenings scale with n/kg and do not contribute substantially to
the line shapes at low frequencies and low momenta.
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Fig. 4. The momentum distribution of quasiparticles for ¢ =0, n =1, k1 = ko = 10,
and several values of u for a d-wave order parameter. The inset shows results for p < 0.
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Fig. 5. Density of states for a d-wave order parameter near u = 0, for n = 1, k1 =

O

ko = 10, and varying Aq.

of superconducting systems with small chemical potential (see Ref. [15] for results
in the normal state of a boson—fermion model in the regime of positive ).

The contributions from quasiparticles to specific heat €' and spin suscepti-
bility x change from C o T2, and x o< T for p > 0, to C' o T, and y o const for
p=0,and to C oc T~ exp(—|u|/T), and x o exp(—|pu|/T) for p < 0. The slopes
of C' and x with respect to temperature are discontinuous at 7' = 0 when p = 0.
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4. Conclusions

In summary, we studied the evolution from BCS to Bose limit for varying in-
teraction strength in a d-wave superconductor. The ground state properties of this
system change significantly when the chemical potential g changes sign. The entire
momentum distribution ng(k) is redistributed, with largest changes occurring at
low k. This reorganization in momentum space is related to the transition from
an extended to a local character of the pair wave function. The symmetry of the
wave function is preserved but its topology is altered?. The character of spectro-
scopic and thermodynamic properties changes from a power-law to an exponential
behavior, as u becomes negative.

For constant pairing strength A and varying particle density, quantities such
as pair size, correlation length and compressibility diverge at g = 0 in the saddle-
-point approximation. This might indicate the existence of a quantum phase tran-
sition. We will publish these and other results separately [16]. In order to answer
the question whether these discontinuities indicate the quantum phase transition
or are simply an artifact of the mean-field theory one needs to include the finite
lifetimes of the quasiparticles.
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