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In this paper we analyse theoretically the transmission of two strong
laser beams through a medium exhibiting optical nonlinearity of the second
order combined with a linear anisotropy. A standard model of two wave
mixing was applied and closed formulas for intensity and polarisation state
were obtained. Numerical calculations show that outgoing beams are very
sensitive to the state of incoming beams and to the material characteristics.
Under some realistic conditions we were able to obtain bistability of both
intensity and polarisation state. The results also show how to modulate the
intensity and polarisation state of one wave by another one.

PACS numbers: 42.65.Hw, 42.65.Ky

1. Introduction

There is a number of effects resulting from the three-wave interaction via
nonlinear media of second order. Among them the optical bistability belongs to
most spectacular ones. This phenomenon may be attributed both to intensity
and to polarisation state of the wave. Both cases were intensively investigated
since years as their potential applications seemed to be very wide (see [1-3] for
a review). In media exhibiting third-order nonlinearity this effect is pretty well
understood and described, whereas in second-order media (for instance a variety
of organic materials) the theory of bistability is much less developed. Additional
difficulty arises from anisotropy (example of material exhibiting anisotropy as well
as nonlinearity of second order is LiJOs). In this paper we take into account both
properties.

Optical bistability is usually observed by allowing a probe laser beam trans-
mit a plate. The outgoing beam depends on the incoming one in a manner typical
of materials exhibiting hysteresis. Much more complicated is the bistability aris-
ing from two-wave interaction when both waves have comparable intensities. The
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problem is sufficiently well solved for third-order media [4]. In this paper we con-
centrate attention on processes leading to second-order bistability. Following the
method developed in [5] we have derived analytical formulas for intensities and
polarisation describing parameters and then performed numerical calculations.

2. Physical model and equations of motion

The linear anisotropy of any material is described by the electric permittivity
tensor ¢. Its form depends on the choice of coordinate axes. If the Oz axis coincides
with the main axis of the symmetry of the material, then

gl 0
€= 0 e 0o |. (1)
0 0 e

The nonlinear susceptibility x is a tensor of the third rank, which for LiJO3z has
only 7 different from zero components. Six of them are the same, one has another
value

X133 = X223 = X232 = X131 = X311 = X322 = b, X333 = @. (2)
Approximate values of these two parameters for this material are b =
—96.5 x 1071 C/V? and a = —74.2 x 10715 C/V2.

Now we assume that two beams of the frequencies wy (let it be 3.67 x 101° Hz)
and ws (300 x 10> Hz) fall on the plate made of the above-mentioned material.
Their electric vectors are Ey and Es, respectively; both are of the order 300 V/m.
Inside the plate each vector may be decomposed into two components: perpen-
dicular (index p) and parallel (index r) to the incident plane: E = ePEP + " E".
The versor e? = e, (Oy axis is perpendicular to the incident plane), whereas
e’ = ae; + fe,, where o and [ determine the angle between the e and the main
axis of the crystal (a? 4+ 8% = 1).

In the same way one can decompose the electrical vector E of all waves gener-
ated in the process of nonlinear interactions of the second order of the frequencies:
2wy, 2ws, w twsy. In each component we may separate the complex amplitude A
and the phase factor according to the formula

E = Ae—ikr+iwt. (3)
This formula applies independently to both types of polarisation (p and r).

Non-vanishing elements of the nonlinear electrical susceptibility tensor in the
framework connected with eP and e are

ePyePe” = b3, ePyee® =b3, e yePel = b7,
e'yele’ =b2a+ fagp. (4)
The nonlinear polarisation P can be expressed as a sum of components PP

and PT for each frequency. For the sake of simplicity we adopt the following rule
for the index j (always the lower one) of particular frequencies:

frequency wy; wo 2w; 2wy W] —ws Wi+ ws

j 1 2 3 4 5 6
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These components may be calculated analytically (we omit here the details). At
the end we get the following formulae:

PP =1p [Agzge—mkg—kg)r 4 ALAR GBS —kD)T | AP o i(BE k)

HASAT IR AR Ape DT | gr AR iEAEDT) (5a)

Plr = b3 [Agzge—i(ké’—ké)r +A§Age—i(k§+k§)r —I—Agzlfe‘i(’k?—kf)r]

bl (2 4 ) [ A5 AT (FET AR R g gg apemiBHEDT]  (5h)

PP =13 [Agzge—mké’—ki)r 4 ATAP I (BE kDT | AP TAL o i(BE k)

+Azzge—i(k§—k§)r+A1fzge—i(kf—kg)r+A€Z§e—i(k§—k§)r]’ (6a)

Pr=bp3 [Agz;e—mkg—k;)r 4 AP A ik kD) +Agzge—i<ks—k§>r]

+hBa(2a + §) [AFA e (KE-EDr 4 ARy | g eI ()

PP =13 [AInge—i(kark;)r +A5Alfe—i(kf+k§)fr] ’ (7a)
P} = bBA} AbePHIT 4 b3(20 4 B)a Al Afem HkiT, (7b)
PP =13 [AgAge—i(k§+k§)r +A5Age—i(lk§+k§)r] ’ (8a)
P = bBAE ABe™ 3T 4 b5(2a + B)a Ay Apem 5T, (8b)
PP = b9 [AInge—i(kg—kg)r n Agzge—i(ki—ké’)r] ’ (9a)
Py = b AY Az RI=EDT 4 b(20 + FlaA] Aye i (KImkDT, (9b)
PP =bp3 [Alnge—W%)’ + AgAge—WHkg)’] , (10a)
P5 = bBAP AL~ I BIHEDT L h3(00 4 B)a AL ALe I (B1HEL)T (10b)

Equations (5)—(10) are sufficient for writing exact formulae for amplitudes
A; of the six waves considered. In the slowly-varying amplitude approximation it
1s possible to write explicit formulae for the first derivatives of these variables with
respect to the space coordinate s (s is measured along the Oz axis, parallel to the
propagation vector k). For instance, the A} fulfils — in the lack of absorption —
the equation
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dAIID : 2 P AL A—1(kE—kL)s r —1(k —k5)s P AL A—1(kE— k! 1)s
4 = QkpﬂobﬁAAe 208 + AR A 6 + ASAje
+ AR ALe iR HRY)s o AT ADe—i(kshD)s | AL AV e—i(Rs—kT)s | (11)

Similar formulae hold for the remaining eleven components of P.

Successive differentiation with respect to s leads to a new set of equations,
in which we neglect terms containing rapidly varying phase factors. In this way
from Eq. (11) we get

dzAIlD wi
bB)? |2 |An |2 4 22 |4B)2 4
T =~ e b | S AT + S A5+

4“1 |Ar|2

wg . 2w
+eblasf+ Jelay] . (12)

Analogous equations describe other amplitudes. The most important now is that
the expression in the bracket [...] includes only terms proportional to the module
|A| of the complex amplitudes A, which in turn are directly proportional to corre-
sponding intensities. Usually, one may assume that intensities of waves participat-
ing in the nonlinear interaction do not change essentially; much more important
are changes of phases (@) of the waves. They may be described as follows. Making
use of the notation

— |A|eiq§
and of the condition
|A| = const,

we get the equation: A" = [—(®)? +10"]|A|e'?. Neglecting second derivatives and
using the above approximations, we obtain from (12) the following equation:

47 _ /Z IifAf )2 =9 (13)

where the coefficients I" make a set of 16 numbers, which may be divided into
4 matrices of the rank 2 x 2 with respect to lower (frequency) indexes. They have
the following form:

wiwg  wiwg
kPkI>  4kPEE
PPl — ,,212 22 4k kg 1%
[F ] - ﬂob 6 wfwg wg ’ (14&)
4kTkL kDkT
[ wiwd + 2w] wiws
kPkL kPEP  4kPET
pr1 — ,,212 22 4k kg 173 175
A L B R (14b)
L 2kDkY kEPEDD kEPEY
r 2, 2 2
WiWe WiWs
ol _ o122 | ARTEE T ARTRE T’ (20 + 9)?
[F ] - /’LOb 6 2 2 2,2 wi ’ (14C)
%+ pr s
L 4kikg kIkEO kLIk}
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1] = 3y 5"

2 4 2, .2 2 2
e (58 + 5 0220+ 9"
(2wl | Wl o , ol oy , (14d)
(415;1%‘ + 4162;;62) a?(2a+ B)?, T (20 + 3)

The right-hand side of Eq. (13) is — within the approximation of constant intensity
— independent of space coordinate s, therefore phases of all waves are linear
functions of s:

P (s) = nj's + 27(0) (15)
(1t = p or r). Under some natural conditions we may assume that initial values of
all phases are equal to zero. This assumption was used in numerical calculations.

It is worthy stressing that coefficients 1 and, consequently, also the phases
@ depend on intensities of the interacting waves (see Eq. (13)).

3. Boundary conditions

The continuity conditions for the left (z = 0) and right (z = L) side of the
plate involve two coefficients: the reflection R and the transmission 7'. In general,
they may depend both on the frequency and on the polarisation of the wave. For
s = 0 (that is z = 0) we have

T AL (0—) + RY B (0+) = AL (0+). (16a)
For z =L (or s = L/a) we have
REAN(L—) = B (L—). (16h)

The symbol B denotes the amplitude of the backward wave, equivalent of A. From
the last equation it follows that

|B}'| = R} || A% (17)
This relation holds for the whole plate. Therefore the change of the phase of
backward waves (denoted as ¥) inside the material is equal to
[ It It
AVS = —|R]. |Ad5j. (18)
The sign minus reflects the change of phase connected with the change of the

direction of propagation.
The boundary condition leads to the final form for module of amplitudes

AH| = T} Ap ; exp (iA@f)
71— R Pexp [i(1— RY)ADY]
Consequently, the equation for the transmitted intensities I has the form
T,

IJH = 2 u] - It Ak

1+ (Rj )2 — 2R]» cos [(1 — Rj )A@j]
where we have introduced the intensity parameters T and R, depending on the
corresponding amplitude parameters (7 and R) in the way: T = T2, R = R2.

The denominator of the expression on the right-hand side of Eq. (20) contains
a periodic function whose argument is a monotonic function of intensities of the

i=12 p=p,r. (19)

(20)
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waves considered. Therefore we may expect a typical bistable behaviour for all
components of the electric fields. This means that also the polarisation state will
follow similar changes.

At the right side of the plate the electric vector takes on the value
EF = At (21)
These expressions may be next put in the coherence matrix M for each frequency
individually. The matrix is defined as follows [2]:

My, M, EYEY, EPE;

M; =| " y] =| = Jr’ ]r_ﬁ] (22)
Moy, My, BB}, EjL;

We will limit ourselves to two fundamental waves (j = 1, 2) as the secondary

waves are of less importance for our analysis.

4. Polarisation states

The state of the polarisation of a wave characterised by the coherence matrix
may be described by means of the polarisation ellipse. The ratio b/a of its axes is
equal to tangent of an angle 8, which fulfils the relations

. My, — M, b
sin 26 = lm, tanf = :l:a (23)

The angle ¢ between the main axis of the ellipse and the Oz axis is given by the
formula

Myy + My,
Mxx - Myy .
After substituting (21) for ' and then (19) for amplitudes A we obtain the following
expressions:

tan 2 = (24)

2/ T TP sin [#*(L) — P(L) — (k* — kP)L/a]
Ir+1v

sin 26 = ) (25)

rlp r _ P — (kT — kP
fan 20 = 2/ cos [PY(L) —WP(L) — (k" — k )L/a]. (26)
Ir —Jp
As the phases @ depend monotonically on intensities I in a manner which in
general allows the bistable behaviour, the same may be expected for the parameters

characterising the polarisation ellipse.

5. Numerical calculations

In order to simplify numerical calculations we assumed that both incident
beams are polarised linearly; the beam with the frequency w; had two components:
one parallel and one perpendicular to the incident plane whereas the second funda-
mental wave (with the frequency wz) had only one component — that parallel to
this plane. We have calculated intensities and polarisation state of the first wave
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in dependence on intensities of incoming waves and on different phenomenological
parameters.

1. The dependence of the transmitted wave (with w = wy) characteristics
on the relative intensity I; (normalised to the incident beam) of the first beam is
shown in Figs. la—d and Figs. 2a, b. The first of them (la) shows the behaviour
of phase of one of the three components. Next three plots (1b, ¢, d) show the
intensity of the normal component (I;) and intensities of parallel components I,
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Fig. 1. The dependence of the phase (a) and intensity of the first component of the
first wave (b), the intensity of the second component of the first wave (c) and intensity
of the second wave (d) on the total intensity I; of the first wave on the entrance. All

intensities are normalised to the incoming intensities of the corresponding two waves.
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Fig. 2. The dependence of two parameters of polarisation ellipse: the ratio b/a of axes
(a) and the angle of inclination (b) of the first wave on the initial intensity I; of the
same wave.
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and I.. Finally, we present the ratio b/a of the axes of polarisation ellipse of the
first wave (Fig. 2a) and tangent of the (doubled) angle of inclination of the main
axis (b) of this ellipse (Fig. 2b). In all cases we have assumed the following values
of the parameters: amplitude reflection coefficient R = 0.7, a = 0.5 and relative
refraction index n,/n, = 1.3. Nonlinear susceptibility parameter is combined with
length L and the reversed linear refraction index n,. Their product (together with
some other constants) was chosen to be 97.55. The shape of all curves appeared
to be very sensitive to its value; we have chosen the most regular ones among
those exhibiting the bistable behaviour. It is easy to see that at a certain value
of the intensity of the first wave (with frequency wy) all the quantities considered
undergo a jump which may correspond to a bistable character of this dependence.

2. Similar behaviour was observed when we allowed to change I» instead
of I (the latter was kept constant at its maximal value). In Figs. 3a,b we have
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Fig. 3. The dependence of two parameters of polarisation ellipse: the ratio b/a of axes
(a) and the angle of inclination (b) of the first wave on the output on the initial intensity

I5 of second wave.

depicted two ellipse parameters (the ratio of axes b/a and tan(2¢)). This time the
ratio b/a changes its sign when passing through a value of Is which means the
change of the direction of rotation of the vector E over the ellipse.

3. Another interesting property is connected with the angle of polarisation
of the incident wave wy. In the following figures the variable o denotes the relative

g” (a) 20454 (b)
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Fig. 4. The dependence of the ratio b/a on the direction of (linear) polarisation of
the same first wave on the input. Part (b) shows how this dependence manifests in the

behaviour of the intensity of the second beam.
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percentage of the normal component to the parallel one in the incident beam. The
polarisation state of the transmitted wave is illustrated in Fig. 4a. The intensity
of the second beam behaves as in Fig. 4b. It is easy to see that the angle of polar-
isation of the incident beam may significantly influence the elliptic polarisation of
the outgoing beam leading to discontinuity at a specific value of this angle.

4. Similar effects were noticed if we changed the anisotropy of the medium.
As its measure we have used the ratio of refractive indices corresponding to two
mutually perpendicular polarisations, e.g. n./ny. In Figs. 5a,b this ratio is denoted

1 w|(0)

5 /\<a>
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6 0.8 1 12 14
NR

tan(2psi)

0 0.6 03 1 1.2 1.4

NR

Fig. 5. The dependence of b/a (a) and tan(2¢) (b) on the anisotropy of the medium.

by NR. As in previous figures we limit here to the case of polarisation ellipse
parameters. The most interesting to us is the behaviour of the ratio b/a. By
changing NR we may reduce the ellipse to a line (b/a = 0) and then to convert it
into a circle (b/a = 1). This process repeats successively.

6. Summary

Interaction of two incident monochromatic beams of similar power via a
nonlinear and anisotropic medium may lead to significant modifications of these
beams. Both intensity and polarisation state may exhibit bistable behaviour. The
underlying mechanism 1s based on the second-order nonlinearity which produces
appropriate changes of phase of all waves involved in this process. They result
in changes of intensities and, consequently, changes of the polarisation state. For
some values of parameters these changes may be drastic as seen from presented
figures. In some cases one may observe a bistable behaviour.

The performed numerical calculations are only qualitative and the choice of
values of physical parameters is to some extent arbitrary but not unrealistic. We
hope that the model may be easily adopted to real situations.
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