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In this paper we discuss the line shapes of a two-level atom in the
presence of broad-band squeezed vacuum and collisional broadening. We
describe the collisions and the squeezed vacuum using a stochastic model
of Rabi amplitude fluctuations. From such a stochastic description the fast
and the slow damping rates of the Bloch polarizations are obtained. The
strong field resonance fluorescence spectrum in the presence of stochastic
broad-band squeezed vacuum and collisions is derived.

PACS numbers: 42.50.Lc, 42.50.Ct

1. Introduction

The stochastic Bloch equations (SBE) with multiplicative fluctuations can
be written in the form of the following stochastic-matrix-differential equation [1]
(repeated indices indicate summation):

dv .

T [Mo + iy () Mg]V, (1)
where x, are external noises, My is the deterministic (coherent part) of the Bloch
evolution and the matrices M}, describe the coupling of the Bloch variables (de-
noted by V) to the noise. For a wide class of external noises, stochastic differen-
tial Eq. (1) can be averaged and as a result the stochastic expectation value of

V(t), denoted here by (V(¢)), satisfies the following differential equation:
d{V (1))
dt

where X is the relaxation matrix or the line broadening operator (LBO). Depending
on the model and the source of the fluctuations, different expressions for the line

= (Mo = 2)(V (1)), (2)

broadening operator X' can be obtained. In the literature one can find extensive
reviews of different theoretical schemes leading to the LBO.

(545)
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In the framework of the quantum noise-operator methods the radiative decay
of a two-level atom interacting with a broad-band squeezed vacuum has been in-
vestigated [2, 3]. Tt has been shown that the Bloch polarizations have two different
damping rates. One of these polarizations is damped at the enhanced rate and the
other at the reduced rate compared to the normal radiative decay. The quantum
noise-operator methods have been applied to a wide class of problems involving
squeezed light. Resonance fluorescence from an atom in a squeezed vacuum [4] and
the inhibition of atomic-phase decays by squeezed light [5] have been investigated.

In a different approach to the quantum noise, stochastic density-matrix equa-
tions for an atom strongly driven by a finite-bandwidth squeezed light have been
derived [6, 7]. The authors of [8] have shown that the squeezed vacuum can be
incorporated in the form of the multiplicative stochastic equation (1). It is known
that a stochastic theory of spontaneous emission without atomic fluctuations will
predict spurious effects like spontaneous absorption of the ground state [9]. The
atomic fluctuations cancel exactly the vacuum fluctuations of spontaneous absorp-
tion, leaving the atom in its ground state [10]. This effect can be incorporated in
the SBE if the c-number multiplicative stochastic process that represents the vac-
uum fluctuations drives only the population ps of the excited state and is inhibited
due to atomic fluctuations for the population of the ground state py [11].

In this paper we present an extension of the stochastic method investigat-
ing a two-level atom perturbed by stochastic collisions and in the presence of
the broad-band squeezed vacuum. This simple statistical model of the collisional
relaxations lead to an explicit expression for the line broadening operator. We
show that this LBO in the long-time limit can be reduced to two lifetimes T}
and T5. We illustrate our approach, deriving the fast and the slow damping rates
of the Bloch polarizations from a stochastic model of squeezed vacuum fluctuations.
The power-spectrum of the strong-field resonance fluorescence in the presence of
broad-band squeezed vacuum and collision is derived and discussed.

This paper is organized in the following way. In Section 2 we introduce a
stochastic model of collisions based on a random telegraph signal description of the
atomic frequency. In Section 3, we derive the essentials of the SBE in the presence
of collision and a c¢-number stochastic vacuum noise and external coherent laser
field. In Section 4 we derive the damping matrix for a two-level atom coupled to a
stochastic broad-band squeezed vacuum and collisions. Finally, Section 5 contains
some concluding remarks.

2. Stochastic model of collisions

We are going to assume that the environment of a two-level system acts as
a stochastic reservoir and gives rise to fluctuations of the atomic resonant fre-
quency wg. We shall model the influence of the buffer gas on the emitter assuming
that the instantaneous frequency of the two-level atom is wg + #c(¢), where z.(t)
describes the collisional stochastic fluctuations.

In the simplest approach to the stochastic description of the buffer gas reser-
voir, we shall assume that z.(t) is a random variable described by a two-step
random telegraph signal (RTS) jumping between two states a and —a. This very
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simple well-known dichotomic Markov process is fully defined by the following
correlations:

(o) =0 and - (ee(0t) = a*exp (-1, 3)

T

where 27 = T is the telegraph jump time. The physical picture of these fluctua-
tions is quite simple. If k is the wave vector of the emitted photon and v is the
instantaneous velocity of the emitter one can assume that due to collisions only
the direction of k changes at random. At each time when the emitter is assumed
to undergo collisions with the perturbers the angle between k and v suffers an
abrupt change of 7 or —w. Between collisions the velocity of emitter stays con-
stant and as a result we can write the RTS in the following form x.(¢) = kv, where
€ = (=1)?®). In this expression n(t) is a number of time the telegraph changes its
state due to collisions. From microscopic considerations we can associate v = 1/7
with the rate at which the emitter, with the velocity v, suffers the next collision.
In such a case

v(v) = anpriv, (4)
where np is the number of perturbers per unit volume and ry is an effective
scattering radius. In this statistical picture of collision the effect of the buffer gas
is viewed to be so drastic that the velocity of the emitter after the collision 1s
assumed to be completely independent of its velocity before the collision.

3. SBE in the presence of stochastic broad-band
vacuum and collision

The atomic Bloch equations driven by a quantum noise are going to be
investigated in the framework of c-number multiplicative stochastic Rabi ampli-
tudes. A stochastic model of squeezed vacuum has been introduced and investi-
gated in [8]. Tt is well known that the broad-band squeezed vacuum generated in
optical parametric oscillation is described by two parameters N and M, which
characterize the reduced quantum fluctuations of the vacuum quadratures [12].
The real parameter NV can be associated with a thermal component carried by the
broad-band squeezed light, while the complex parameter M = |M|exp(ip) rep-
resents the phase-dependent vacuum contribution due to the squeezed quantum
noise. Guided by this physical interpretation we incorporate broad-band squeezed
fluctuations assuming that the squeezed vacuum is described by the following
complex random two Rabi amplitudes §2; and £2,. The thermal part £2; = z¢ + iy,
couples to the atomic degrees of freedom in the standard way. The vacuum part
2, = zy + 1y, couples to the atomic degrees in the different way. We shall assume
that the coherent light field {20 = x) + 1y is deterministic.

The SBE in the presence of these random fields are obtained in the following
way. The light part of the driving field and collision couples to the three compo-
nents (u, v, w) of the Bloch vector in the standard way [13], while the vacuum part
of the field drives only the population of the excited state and is inhibited due to
atomic fluctuations for the population of the ground state [11]. With this basic
assumption the SBE in this case have the following form:



548 N.H. Cong, L.V. Vinh

. 1
t=—(A+z())v+yw+ §yv(w + 1),

. 1
v=(A+z.(D))u+ xyw+ §xv(w +1),

W= —(y + yy)u— (x1 + ), (5)

where A 1s the detuning of driving coherent field frequency from the atomic res-
onance frequency. Note that the vacuum Rabi frequency is coupled only to the
population of the excited state p, = %(w + 1). This takes into account the fact
that in the vacuum only spontaneous emission can occur, but never spontaneous
absorption.

Fluctuations of the thermal part of the squeezed light are described by a
Gaussian white-noise with a mean value equal to zero and the following non-vanish-
ing autocorrelations:

(zi () (t)) = 2ANGS(¢ — 1),

(s (D)ys(t)) = 2ANS(t — '), (6)

where A 1s the atomic decay rate for spontaneous emission into the unsqueezed
vacuum and where the parameter N characterized the “thermal” contribution of
the squeezed vacuum.

Fluctuations of the two vacuum components are described by Gaussian
stochastic processes with a mean value equal to zero and the following correla-
tions:

(zy(Day (t')) = 2A(1 — 2| M| cos )é(t — '),
(i (Oyv (') = 2A(1 + 2[M | cos p)é(t — t'),

(e (e (1)) = 241 M | sin @5 (t — /). (7)

Note that the diffusion coefficients are phase-dependent. This reflects the fact
that squeezed vacuum fluctuations are described by a stochastic process whose
Fokker—Planck equation contains phase-dependent diffusion terms. In general the
parameters N and M can be changed independently, though for the ideal squeez-
ing, they are connected by the relation: |[M| = /N(N + 1). The apparent nonpos-
itive diffusion coefficients for the vacuum component do not cause mathematical
problems. Only the entire combined thermal and vacuum field form the squeezed
stochastic field [6]. The stochastic differential Eq. (5) driven by the correlated
Gaussian noise and RTS can be averaged exactly. The stochastic expectation value
of V() is the solution of the following integro-differential equation:

WD — (o = 5y - [ s = v, ®)

where Y and X, are two parts of the relaxation matrix X
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5y = DMy My, (9)
where Dy; are various diffusion coefficients of the white noise and the Laplace
transform of the line broadening kernel for collisions has the following form:

1
Cz—i—(l/r)—MoMC’ (10)
where M. is the matrix of the multiplicative collisional noise. If we focus our
attention on long-time behavior which is valid if all early transients have died
away, we can perform the well-known “pole approximation” taking z = 0 in X(z).
In the long-time approximation the integro-differential Eq. (8) reduces to Eq. (2)
with the LBO in the following form:
1
_ 2
Y =Dy MM + a MC(l/T)—MOMC. (11)

From this expression the averaged SBE are

() = —A(N + % + | M|cosp + Iy){u) — (A|M|sing + A){v),

Y. =d’M

(0)y = —A(N + % — M| cosp + Iy){v) — (A|M|sinp — A){u) + 2o{w),

() = —A(2N 4+ 1){w) — A — 2p{v)}, (12)
where we have assumed for simplicity that the coherent Rabi amplitude §2; is real
and

ClZT

Fu:azT, F’UIW (13)
We recognize in these equations the Bloch equations with the enhanced and the
reduced damping rates [2]. At exact resonance of the driving field with the atomic
transition frequency three different lifetimes can be calculated from the LBO. The
transverse matrix damping rate in the (u, v)-plane that results from the c-number
stochastic squeezed-vacuum fluctuations is phase-dependent and has the following

form:

L:A N+(1/2)+ |M|cosp+ I, | M| sin (14)
T, | M |sin ¢ N+ (1/2) — |M|cosp + T,

The corresponding noise-induced longitudinal damping rate is
1
— = A(2N + 1). (15)
Ty

The transverse matrix damping is off-diagonal. This suggests that the polarization
vector can be reduced to “normal modes”, leading to diagonal damping rates

A
Mz =GN+ 1+ T+ 1) %), (16)
where

g= (17)

\/(2N+%+FU+FU)2—4<N+%+Fu+|M|cosgo) <N+%+Fv—|M|cosg0).
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These two eigenvalues of the damping matrix are associated with dampings of
the two “normal modes” being linear combinations of (u) and (v). Note that in
general the damping rates in the presence of collisions depend on the power of
driving field. This results in an asymmetry between the transverse lifetimes of
the Bloch components u and v. This asymmetry between two lifetimes is most
pronounced in the limit {25 > 7, when a driving field with a Rabi amplitude is
much larger than the collisional lifetime [14]. In this case we have I, = 0 and only
the collisional I, contributes. In the white-noise limit, i.e., when 7 — 0 with fixed

a7t we have I, = I, = a®r.

4. Resonance fluorescence in the presence of the stochastic vacuum
and collision

Because the quantum fluctuations have been incorporated in the SBE in
the form of c-number random amplitudes, the power-spectrum of a noise-induced
dipole correlation describes the resonance fluorescence of a radiating dipole mo-
ment in the presence of squeezed vacuum. Correlations between the radiating
dipoles are induced by the vacuum noise. The theoretical methods involved in the
calculations of stochastically induced resonance fluorescence spectra have been
described in great detail elsewhere [15, 16].

For the steady-state autocorrelation of dipole we define the following quan-
tities:

Sa(w) = tlir& 2Re /000 exp(—iwr){d*(t + 7)d(¢))dr. (18)

The quantity represents the stationary spectrum of dipole fluctuation. In order to
calculate the dipole-dipole correlations required in the definition (18) of the dipole
power spectrum, we introduce the following four-component transposed vector:

V(t,7) = (d*(t + 7)d(t), d(t + 7)d(t), p2(t + 7)d(1), d(1)), (19)
where the complex dipole moment d is defined as u = d 4+ d* and v = i(d — d*).

By a repeated application of the stochastic Bloch equation (5) it is easy to check
that this four-component vector satisfies a differential equation

d

Evl = §$CV1 + 5(290 + Qv + QQt)Vg — 5(90 + Qt)VAL,

Ay v L0+ 20 4200V + (20 + 20V,

172 = Tg¥eVz T3 0 v t)Vs + 54 t) V4,

d 1 1

EVB = 5(90 + 2, + Qt)vl — 5(90 + 2 + Q:)V2a

d

—V,=0. 2
dTV4 0 (20)

From these equations we conclude that this 4-component vector satisfies a stochas-
tic differential equation in a form given by (1) with time-independent matrices
My, Mj and the following initial condition for:

V(t,7=0) = (d*()d(t),d(®)d(t), p2(1)d(t), d(t)). (21)
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Performing the average of the multiplicative stochastic equations (20) we obtain the
following averaged Bloch equations for second order atomic correlation functions:

Vi) = [~ 5N+ D+ b 1) = (Al lexptio) + 012) (1)

Fi020(V5) — %90<d>,

(02 =~ expli) + ba) () = | N + 1)+ bag] (1)

dr
—if20(V3) + %Qo<d>,

dd—T<v3> = %90<v1> - %90<v2> — A(2N + 1)(V3) + AN(d). (22)

In Eq. (22) we have used the following notations:

2 1 2_1_922 292
2 [( /T)P 0/ ]a b12:b21: ClP 0’ (23)

big = by =

where

06 [

04|

02

. s . e .
-10 5 0 5 10

Fig. 1. Resonance fluorescence power-spectrum as a function of the squeezed phase ¢.
The solid line corresponds to ¢ = 0, the dashed line — ¢ = 7/2, and the dotted line —
@ = m. Plots ate for A=1, 2 =5, N=0.1, a=0 and 7 = 0.01.
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Fig. 2. Resonance fluorescence power-spectrum as a function of the squeezed param-

eter N. The solid line corresponds to N = 0.1, the dashed line — N = 0.5, and the

dotted line — N = 1. Plots are for A=1, {20 =5, a =2, 7=0.1, and ¢ = 0.

2 0 2 4

Fig. 3. Resonance fluorescence power-spectrum (log,o S) as a function of the coherence
time 7 of the collisional stochastic fluctuation. The solid line corresponds to 7 = 0.2,
the dashed line — 7 = 0.4, and the dotted line — 7 = 0.6. Plots are for A =0, {2, = 3,
a=2,¢=0and N =M = 0.
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We solve system of equations (22) for the dipole—dipole correlation function, and
we evaluate the power-spectrum using (18). As a result the strong-field resonance
fluorescence spectrum in the presence of broad-band squeezed vacuum and collision
is given by the following formula:

_ ZWw)

) = 5. (25)
where the functions Z(w) and N(w) are defined in the Appendix.

In Fig. 1 we have plotted the resonance fluorescence spectrum in the presence
of astochastic squeezed vacuum (N = 0.1) and collision as a function of ¢. In Fig. 2
we have plotted the resonance fluorescence spectrum in the presence of a stochastic
squeezed vacuum and collision with different values of the parameter N. In Fig. 3
we have plots of log;; S in the presence of only collision (N = M = 0). We note
that these spectra have the same form as those in [17].

5. Conclusions

In this paper we have discussed characteristics of the strong atom-field in-
teraction in the presence of squeezed vacuum and collision. We have shown that
the atomic Bloch equations driven by a quantum noise can be studied in the frame-
work of a stochastic multiplicative equation of the form given by (1) with e-number
stochastic Rabi amplitudes. We have shown that the squeezed vacuum stochas-
tic fluctuations represented by c-number random amplitudes can be coupled to
the atomic variables in such a way that the spurious spontaneous absorption of
the ground state is removed. This can be achieved if the e-number multiplica-
tive stochastic process that represents the vacuum fluctuations drives only the
population of the excited state and is inhibited due to atomic fluctuations for
the population of the ground state. From a stochastic description of broad-band
squeezed vacuum and collision we have derived the fast and the slow damping rates
of the Bloch polarizations. The model of squeezed vacuum fluctuations is simpler
from a stochastic theory which requires the doubling of the random process for
vacuum fluctuations. We have shown that the noise-induced strong-field resonance
fluorescence spectrum for the stochastic model of squeezed vacuum fluctuations
and for finite bandwidth collision can be derived. The strong-field resonance flu-
orescence and other effects can be studied for finite bandwidth squeezed light in
the framework of the same formalism.
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Appendix

The functions Z(w) and N(w) forming the power spectrum are as follows:

Z(w) = E(w)Y (w) + F(w)X (w),
N(w) = Yw) + X*(w),

Y(w) = 2pBs(w) + 23[T1(w) + B1(w)] — 2wB; (w)Ba(w).
In these expressions we have used the following notations:

Bi(w) = p+ ReBii(w),

Bz(w) —w+ IHlBll( )
Ty (w) = A|M|cosp + ReBya(w),
Ta(w) = A|M|sing + ImBy2(w),
Bs(w) = (Bi(w))? = [(B2(w))* 4 (T1(w))* + (T2(w))?],
Ba(w) = (B2(w))?[£25 + 4pBi(w)]
with
_ AQRN +1)

2 bl

1 1\?
P:(iw—l——) (iw—l——) + £23
T T

a? {[iw + (1/7’)2] + .(28/2}
P ;

By =

a’$2?

By = .
12 2P

References

[1] K. Wédkiewicz, Phys. Rev. A 19, 1686 (1979).

[2] G.W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986).

[3] G.W. Gardiner, Quantum Noise, Springer-Verlag, Berlin 1991.

[4] H.J. Carmichael, A.S. Lane, D.F. Walls, Phys. Rev. Lett. 58, 2538 (1987).
[5] A.S. Parkins, C.W. Gardiner, Phys. Rev. A 37, 3867 (1988).



Collisional Line Shapes in the Presence ... 555

[6] P.V. Vinh, Ph.D. Thesis, Warsaw University, Warsaw 1998; C.W. Gardiner,
A.S. Parkins, Phys. Rev. A 50, 1792 (1994).

H. Ritsche, P. Zoller, Phys. Rev. A 38, 4657 (1988).

E. Kahler, K. Wédkiewicz, J. Mod. Opt. 41, 491 (1994).
P.W. Milonni, Am. J. Phys. 52, 340 (1984).

P.W. Milonni, P.L. Knight, Phys. Rev. A 10, 1096 (1974).
K. Wddkiewicz, Phys. Rev. A 38, 2932 (1988).

M.J. Collett, C.W. Gardiner, Phys. Rev. A 30, 1368 (1984).
K. Wddkiewicz, J.H. Eberly, Phys. Rev. A 32, 992 (1985).

K. Wédkiewicz, N.H. Cong, in: Spectral Line Shapes, Vol. 5, Ossollineum, Wroctaw
(Poland) 1989, p. 527.

[15] Th. Haslwanter, H. Ritsch, Phys. Rev. A 38, 5652 (1988).
[16] A.A. Rangwala, K. Wédkiewicz, C. Su, Phys. Rev. A 42, 6651 (1990).
[17] K. Wédkiewicz, B.W. Shore, J.H. Eberly, Phys. Rev. A 30, 2390 (1984).

[7
8
[9



