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The role of nonpolar optic phonon scattering and of umklapp acous-
tic phonon scattering is analyzed for a delocalized positronium atom in ionic
crystals at elevated temperatures. At temperatures above which they become
essential both of these scattering mechanisms contribute to the imaginary
self-energy of positronium renormalizing its acoustic deformation potential
constant. It was such a renormalization that was recently observed experi-
mentally for delocalized positronium in MgF; crystal. We put forward the
theoretical explanation of these experiments based upon the model of non-
polar optic phonon scattering of positronium. An effect analogous to that
observed in MgF is predicted for crystalline quartz above the temperature
of (a—p)-phase transition.

PACS numbers: 78.70.Bj, 71.60.4+z, 71.38.+1, 36.10.Dr

1. Introduction

Positronium (Ps), the bound state of an electron and a positron, has been
found to be formed in a delocalized Bloch-type state in ionic crystals with a low
enough concentration of defects at sufficiently low temperatures (typically below
a few tens K) [1]. The formation of Bloch-type Ps in these crystals is confirmed by
observing very narrow peaks (the central peak and satellite peaks appearing at the
momentum corresponding to the reciprocal lattice vectors of the sample crystal)
in the momentum distribution of the photons resulting from the 2v-decay of Ps
upon irradiating the crystals by low-energy positrons. As temperature increases,
it 1s observed that the central Ps peak becomes drastically wider and the satellite
peaks disappear, indicating the localization of Ps [1]. Such an effect of a thermally
activated self-localization of Ps was observed in many ionic crystals and was an-
alyzed theoretically in Refs. [2, 3]. The only exceptions presently known are the
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crystals of MgF; and a-SiO3 (a-phase of crystalline quartz). As is shown in recent
experiments [4, 5], the Ps atom in these crystals remains delocalized up to temper-
atures ~ 700 K (this experimental fact was first explained theoretically in Ref. [3]).
The central and satellite Ps peaks in MgF» are observed to be drastically broad-
ened at temperatures higher than 200 K. This drastic broadening was failed to
be explained in terms of Ps scattering on longitudinal acoustic phonons. An effect
appeared as if there were an additional scattering mechanism activated at temper-
atures higher than 200 K which renormalized the acoustic deformation-potential
constant of Ps so that it increased by a factor of approximately two in the narrow
temperature range from 200 to 355 K. A similar effect was not observed in a-Si0O4
where the temperature broadening of the central and satellite peaks of the Ps mo-
mentum distribution was satisfactorily explained by means of Ps-acoustic-phonon
scattering throughout the entire temperature range of ~ 80-700 K.

In terms of the Green functions formalism [6], the Ps momentum distribution
at finite temperatures is expressed as [4, 5]

I'(p,w)
(w— p2/2M*)?2 + I'2(p,w)’ (1)

where the exponential factor stands for the Boltzmann statistics because there is
at most only one Ps atom at a time under usual experimental conditions. The
non-exponential factor represents the so-called spectral density function in its ex-
plicit form with I'(p,w) being the imaginary self-energy of Ps [6]. In the weak
phonon coupling regime (delocalized Ps) the latter one is usually written to the
lowest (second) order approximation in the Ps interaction with a phonon field:

I'(p,w) = WZ |V(ﬂ|2[(n(ﬂ +1)o(w = Ergq — hwg) + ngd(w — Ekpq + hwy),  (2)
@
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where Vy is the interaction matrix element, Fg = hzkz/QM* the energy of Ps with
the band mass M* and quasimomentum k = p/h, ng = [exp(hwy/ksT)—1]71 —
the equilibrium phonon distribution function, wg — the frequency of the phonon
with the wave vector q.

The interaction energy of a particle with lattice vibrations in its simplest form
depends linearly on strain — acoustic strain in the case of acoustic phonon modes
and optic strain in the case of optic phonon modes (see, for instance, Ref. [7]).
These strains influence the particle in its band in two distinct ways. In the first way,
short-range disturbances of the periodic potential cause practically instantaneous
changes in energy, and these are the ones quantified by deformation potentials
and referred to as deformation-potential scattering (acoustic and nonpolar optic,
respectively). In the second way, the distortion of the lattice may destroy local
electric neutrality, and produce electric polarization and associated macroscopic
comparatively long-range electric fields to which the particle responds. Disturbance
of the particle’s motion by this effect is referred to as piezoelectric scattering, if
associated with acoustic modes; and polar optic scattering, if associated with optic
modes. Contrary to deformation-potential scattering, the latter two are believed
to be less important for the Ps atom in ionic crystals because of its electric neu-
trality [8].
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Acoustic deformation-potential scattering is described by the Ps-acoustic-
-phonon interaction with the Hamiltonian given in the simplest form by [7, 9]

Hiy = —EqV -urma = Y Vi¥at, jax(bea — b7 40) (3)
k.q.9

with Fq and u, being the acoustic deformation-potential constant and acoustic
lattice displacement, respectively. The right-hand side of the equation represents
the secondly quantized form of the interaction, where af (ag) and b, (bga) are
the creation (annihilation) operators for Ps and longitudinal acoustic phonons,
respectively, g is such a reciprocal lattice vector that k and k' = k+ g+ ¢ belong
to the first Brillouin zone of a crystal. The interaction matrix element takes the
form [3]

Vi = —iBq, /72N£waaq

4
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where N is the number of unit cells in the crystal, M — the total mass of the
atoms in the unit cell, ap — the Bohr radius of Ps, and ¢ — the absolute value

of q.

The interaction Hi(ri) consists of two parts. The term with g = 0 describes
the normal scattering processes on long-wave longitudinal acoustic phonons of the
frequency wga = ugq, where u is the average velocity of longitudinal acoustic vibra-
tions. Being substituted in Eq. (2), this term yields the Ps imaginary self-energy
in the form

@) _ EdZM*S/ZkBT

IO ) = SO G o)
where p is the density of the crystal, kg — the Boltzmann constant. Equation (1)
with the allowance made for Eq. (5) satisfactorily explains the temperature de-
pendence of the Ps momentum distribution in «-SiO, and fails in explaining it
in MgF» at temperatures above 200 K. In the latter case, one has to assume the
increase in the Eq constant with temperature in the narrow temperature range of
200-355 K so that it changes from 7.6 eV below 200 K to 16 eV above 355 K [4, 5].

The term with g # 0 describes so-called umklapp scattering on short-wave
acoustic phonons [10]. This term yields the correction to Eq. (5) which renor-
malizes the acoustic deformation-potential constant F4 so that at temperatures
above Th = hwi/kp < Tp (w1 = 2u/a < wp is the frequency of the short-wave
acoustic phonon with the wave vector ¢ ~ ¢/2; Tp, wp, and a are the Debye
temperature, Debye frequency, and lattice constant of a crystal, respectively) the

renormalized effective constant Ey starts growing with temperature in a sigmoidal
way from FEj to \/Ecz1 + (uEél)/wl)z, where Eél) ~ vFEqq/2 is the analog of the
deformation-potential constant for umklapp scattering, v — the number of the
nearest neighbors in the reciprocal lattice space (see Ref. [10] for details). Such

temperature behavior of E4 is consistent with what was experimentally measured
in MgF5 [4]. For this reason the mechanism of umklapp Ps-acoustic-phonon scat-
tering was used in Ref. [5] as a model for theoretical interpretation of MgFs data.
However, if the umklapp effect is the case, then there arises and remains open the
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question why this scattering mechanism was not observed in a-Si0;. In addition,
the absorption or emission of the short-wave acoustic phonon by Ps would, ac-
cording to Eq. (2), yield its intermediate-state energy w in Eq. (1) of the order of
W~ Epygrothwy ~ hz(g/2)2/2M* + hwy ~ hwp /v & hwp ~ hwp /7, where v =
hwp /(h*qd /2M*) is the ratio of the maximal phonon energy to the particle’s band
width (¢gp = wp/u ~ ¢/2 is the Debye wave vector), called the non-adiabaticity
parameter [11]; ¥ ~ 0.01 for typical ionic crystals. Then the exponential factor
in Eq. (1) would be of the order of exp(—wp/vkpT) ~ exp(—100Tp/T) ~ 0 up
to T ~ 10* K, thereby completely cutting off the umklapp contribution in the
momentum distribution of Ps.

The present paper suggests a novel approach to the theoretical explanation
of the MgF, and «-SiO» experimental data reported in Refs. [4, 5]. An advantage
of this approach is that it explains both drastic temperature broadening of the
Ps momentum distribution in MgFy above 200 K and evidence for the absence of
such broadening in @-Si02. The explanation is based upon the mechanism of optic
deformation-potential scattering of Ps.

2. Optic deformation-potential scattering and its role for Ps
in ionic crystals

Nonpolar optic deformation-potential-type phonon scattering is known to be
of importance in crystals with two and more atoms per unit cell when a correspond-
ing optic deformation-potential constant is non-zero because of local symmetry
restrictions [7, 12, 13]. Indeed, although the number of acoustic phonons is much
larger than that of optic phonons, the acoustic scattering matrix element squared
is estimated to be of the order of that for nonpolar optic scattering multiplied by
the small factor ga < 1 [12, 13]. To take the nonpolar optic scattering mechanism
into consideration in the Ps problem we start with the interaction Hamiltonian of

the form [7]

o | M o
Hi(nt) = MDO S, o~ Z ng )az_l_qlak(bqo - bfqo), (6)

k.q
where D, is the vectorial optic deformation-potential constant, u, — the optic
lattice displacement, M — the reduced mass of a pair of atoms in the unit cell.

The right-hand side of the equation represents the secondly quantized form of
Hi(ft) written within an isotropic approximation with umklapp processes neglected

(compare with Eq. (3)). The operators bt (bgo) create (annihilate) long-wave
optic phonons of the constant frequency w,,

o .o [ h
Vg? = —iD, 2M N, @

with D, being the absolute value of D,.

Substituting the interaction matrix element Eq. (7) in Eq. (2), upon straight-
forward calculations one gets the nonpolar optic contribution to the Ps imaginary
self-energy in the following form:
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where n(w,) = [exp(hwe/kT) — 1]7! and 6(z) are the optic phonon distribu-
tion function and step function, respectively. Then the total imaginary self-energy
accounting for both acoustic and nonpolar optic scattering of Ps can, in view of
Eq. (5), be written as

W W W

X [(n(wo) +1)0 (1 - h%) 1% o1+

E3(w)M*3/2kpT

I'(p,w)=T®(p,w)+TC)(pw)= =4 9

(p,w) (p,w) (p,w) oty (9)
with

Eq(w) = (10)

hu? D2 h h 1
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representing the “effective” deformation-potential constant with nonpolar optic
scattering taken into account. In view of the fact that only w ~ kg7 mainly
contributes to the Ps momentum distribution (Eq. (1)), the w-dependence of Ed(w)
can be approximately changed by T-dependence so that Eq. (10) is rewritten in
the approximate form

Eq(T) ~ (11)
hu? D2 h h h i
2 AU bo o nel1— o _ o o 1 o
{ 1t STy | M) +1) ( kBT) RSO e

explaining the results of the experiment for MgFs [4, 5]. Indeed, Ed(T) is seen
to tend to F4, the acoustic deformation-potential constant of Ps, at low tem-
peratures T < hwo/kp, where optic vibrations are not excited. In the opposite
case, when T > hw./ks, Ed(T) tends to the temperature independent effective
constant Eq = E2 + (uDo/ws)? representing the acoustic deformation-potential
constant “renormalized” by nonpolar optic scattering of Ps. One can estimate
the ratio Do/ws by comparing this constant with the experimental result for
MgFs at T' > 355 K (16 €V above 355 K, 7.6 eV below 200 K [4]). One obtains
Do /wo ~ 2 x 1075 eV s/cm then. If one further assumes w, to be ~ 5 x 1013 571
the average acoustic frequency in MgF, corresponding to the edge of the Brillouin
zone (estimated by means of wo ~ um/(2a/3 + ¢/3) with u & 7 x 10° ¢cm/s [14]
and the MgF, lattice constants a = 4.64 A, ¢ = 3.06 A [15]), then one obtains
the reasonable estimate Dy ~ 1 x 10° eV /em for the optic deformation-potential
constant of Ps in MgF,. (Typical values of D, for electrons and holes in semicon-
ductors are ~ 5 x 10% eV/cm [7]; for example, D, = 7 x 10% eV /em for electrons
in Ge [16].)
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3. Conclusions

Above it was shown that nonpolar scattering of Ps on long-wave optic
phonons is responsible for the renormalization of the Ps acoustic deformation-
-potential constant. This explains drastic temperature broadening of the Ps mo-
mentum distribution in MgFy above 200 K reported in Refs. [4, 5]. Experimental
evidence for the absence of the same effect in a-S105 can be attributed to local
symmetry restrictions ruling out the nonpolar scattering mechanism in this crystal.

Optic deformation-potential scattering is known to be allowed in degenerate
and forbidden in nondegenerate I'-valleys (Brillouin zone center) of cubic crystal
lattices [7, 13]. This is easy to understand on the basis of general principles of group
theory. The constant Dy i1s determined by the matrix element of the perturbation
operator, that is the variation of the rigid-lattice potential due to optic lattice vi-
brations, taken over Bloch wave-functions of a particle in the neighborhood of its
band minimum [12, 13]. For non-degenerate I'-valleys of cubic lattices this matrix
element transforms according to the unit representation of the point group of the
crystal, whereas zone-center optic phonon modes are triply degenerate, i.e. corre-
sponding normal lattice vibrations transform according to the three-dimensional
group representation. In such a situation, the interaction (Eq. (6)) is not an in-
variant with respect to point group transformations and, therefore, vanishes (or,
in other words, D, = 0). This is the reason why optic deformation-potential scat-
tering is forbidden in nondegenerate and allowed in triply degenerate I'-valleys
of cubic crystals. If, further, the point group of the crystal has lower symmetry
than cubic (noncubic crystals), then the three-dimensional group representation,
according to which zone-center optic phonon modes transform, will be reducible. If
this reducible representation contains irreducible one of the same dimensionality
as the degeneracy multiplicity of the I'-valley, then the optic modes transform-
ing according to this irreducible representation will be present in the interaction
(Eq. (6)) providing its invariance with respect to point group transformations. The
constant 1), is non-zero for such optic modes and these modes will be responsible
for nonpolar optic scattering of the particle in the I'-valley.

The aforesaid results let one predict a quite new effect for the delocal-
ized Ps atom in crystalline quartz. Crystalline quartz is known to undergo the
second-order transition from «- to S-phase (a-SiO; — (3-Si0O2) at temperature
above 846 K [15, 17]. As this takes place, the type of the symmetry of the quartz
lattice increases from Ds to Dg [17]. The Dgs point symmetry group is isomorphic to
the Cs, point group of wurtzite-structure crystals and, therefore, has the same set
of group representations for the Brillouin zone center and, consequently, the same
selection rules for zone-center optic phonons. According to Ref. [13], the Cs, point
group (and Dg isomorphic to Cs,) admits nondegenerate and doubly degenerate
I'-valleys of the Brillouin zones of corresponding crystals, whereas zone-center op-
tic phonon modes transform according to the group representations of single and
double dimensionalities. Therefore, whatever the degeneracy multiplicity of the
I'-valley, there always exists the optic mode transforming according to the group
representation of the dimensionality equal to the degeneracy multiplicity of the
I'-valley, so that the interaction (Eq. (6)) will always be non-zero for I'-valleys
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of crystals of the Cs, and Dg point symmetry groups. From this it follows that,
being absent in a-Si04 crystal, Ps nonpolar optic phonon scattering must manifest
itself above 846 K, the temperature of (a«—f3)-phase transition, yielding the effect
of drastic temperature broadening of the Ps momentum distribution in 8-5S105
crystal.
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