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The discussion of qubit for quantum computation in quantum dots tech-
nology is presented. The state-of-the-art structure of multi-electron dot is
considered and the appropriate quasi-two-level system is suggested employ-
ing the singlet—triplet transition in the presence of magnetic field. The meth-
ods of qubit rotation (the write procedure) as well as two-qubit operations,
as controlled-NOT, in vertically stacked dots system are analysed.

PACS numbers: 73.20.Dx

1. Introduction

Recently, several proposals for the quantum information processing on quan-
tum dots (QDs) systems have been suggested. They include both the spin degree of
freedom [1, 2], as well as the carrier density excitations with special attention paid
to excitons in self-assembled dots [3, 4]. The latter idea seems to be interesting,
since it employs the ultrafast resonant optical techniques [5, 6], which are faster
than typical decoherence processes involving electrons and holes in dots. On the
other hand, the advantage of the spin degrees of freedom is based on the fact that
the decoherence for spin is less efficient [2, 7]. All the proposals refer however to
ideal situations of qubit definition as the exactly two-level system [8, 9], e.g. spin of
single electron or exactly one exciton per dot, whereas in real QDs we deal rather
with multi-electron systems with complicated level structure. In particular it con-
cerns the self-assembled strain-induced vertically stacked dots pair, interesting for
applications [10, 11]. Therefore the proper definition of qubits in such structures
needs the discussion. For instance, instead of single electron spin, the noncompen-
sated total spin of electrons could be used as a qubit. In practice, an isolated from
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environment subsystem could play the role of a qubit if two quantum levels of this
subsystem are sufficiently well separated from the rest of its spectrum.

As 1t follows from a theoretical analysis of filling many-electron dots, and
even from recent experiments on vertical dots [12-14], a common and qualitative
property of multi-electron dots is the existence of the so-called singlet—triplet tran-
sitions between the effective single-particle levels in magnetic field (for a number
of electrons N > 4). Tt is a result of the competition between the direct Coulomb
interaction and the exchange interaction of electrons in a nonzero perpendicu-
lar magnetic field in the region of crossing single-particle (Fock-Darwin) levels
(cf. e.g. [15]). The magnetic field changes the energy separations of these levels,
and one can observe the departure from antiferromagnetic spin alignment to fer-
romagnetic filling according to first Hund’s rule, similar to ordinary atoms. The
characteristic crossing of levels with the simultaneous change of the spin polariza-
tion seems to be the dominant qualitative picture within the shell description of
the dot, robust against many particularities of theoretical modelling [15, 16], and
is convincingly confirmed in experiment [12] in an easily attainable region of mag-
netic field (of the order of 1 T). Two crossing levels, well-separated from others,
could be considered as a qubit in the realistic multi-electron dot. The energy dis-
tance between these levels can be precisely tuned by the magnetic field and can be
made very small, which is important as the Zeeman splitting is also minute. A too
small energy distance between qubit levels is however inconvenient, as it leads to
the long time of qubit rotation (e.g. for ~ 1 peV of the order of 10719 s). We anal-
yse the possibility of proper definition of the qubit employing the singlet—triplet
transition for multi-electron dot (with N > 4) and also singlet-triplet transition
in the model He-dot, i.e. two-electron system (cf. [16, 17]). The methods of qubit
rotations are considered. The two-qubit system i1s modelled by a pair of vertically
stacked dots, each with two electrons, interacting electrically.

2. Properties of state-of-the-art self-assembled QDs

The electrical interaction in QDs plays a much more important role than in
ordinary atoms. The quantization of kinetic energy by confining potential scales
with QD dimension d as 1/d?, while the Coulomb interaction energy as 1/d. For
small dots (d ~ 10—20 nm) these two terms are in the similar relation as in atoms
and Hund’s rules are applied for noncompletely filled electrons shells. According to
these rules the total spin .S within the shell is maximal and the same holds for the
total angular momentum. By varying the external magnetic field perpendicular to
the dot it is possible to change the effective dot radius d, because the magnetic
field enhances confinement. It results in variation of inter-level energy distances
and specific interplay between direct and exchange interaction terms. It causes the
transitions between levels, completely unaccessible for atoms or molecules. In order
to induce similar behaviour in atoms the one-order greater magnetic fields should
be applied, 1.e. the fields of magnitude of a few tens or hundreds of T instead of
single T as for QD. This rare opportunity meets recently with growing interest
in implementation of quantum logic gates in QDs technology. Several proposals
are suggested, but for considerations of logic gating the idealized structures are
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assumed (as a single electron dot for a spin qubit, or a similar ideal structure for an
excitonic qubit). Therefore the realistic considerations are of crucial importance
(cf. e.g. [18-20] for realistic studies of excitons) especially addressed to coupled
dots systems.

For the state-of-the-art coupled QDs systems we deal with two almost planar,
lens-shaped vertically stacked dots [10, 11]. They are self-assembled InAs/GaAs
dots induced by the strain, in which several electrons (and holes) can be trapped.
They have a radius of the order of 10 nm (the upper dot has however the slightly
greater radius than the bottom one [10]). The vertical separation between dots in
the pair is also of the order of 10 nm.

The single self-assembled dot of similar dimension as each in this pair is very
well recognized from the point of view of its electronic structure [15]. Let us remind
the most important one of these properties.

I. The real geometry of confinement only weakly modifies the single-electron
levels (and their dependence on magnetic field) from their form given by Fock—
Darwin states (i.e. for planar parabolic confinement), cf. Fig. 1, where the compari-
son of pure 2D parabolic confinement with lens shape 3D confinement is presented
(the lens radius d = 18 nm and the lens hight A = 4.4 nm, cf. [21]). For this
structure, the shells are clearly defined.
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Fig. 1. Comparison of single-electron levels for lens-shaped self-assembled dot (radius
d = 18 nm, hight » = 4.4 nm) of exact calculation (circles) and Fock-Darwin levels
(lines) [15, 30]; and Fock—Darwin levels not confined for lens-shaped dot (dashed lines).

IT. Inclusion of interaction modifies single-particle levels especially strongly
within shells. Generally, levels (shells) are shifted towards higher energies propor-
tionally to the inter-particle interaction energy and a number of electrons (a typical
interaction energy scale in the considered structure ~ 25 meV).
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ITI. The magnetic field dependent interplay between direct Coulomb interac-
tion and exchange interaction results in singlet—triplet transitions in a many-par-
ticle ground state for N = 4,5,6,... (N — the number of electrons in the dot),
cf. Fig. 2a. It can be also observed via the analysis of addition energy for the last
electron (or chemical potential), cf. Fig. 2b.
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Fig. 2. The ground-state energies for confined (N =1 = 6) electrons in self-assembled
QD (d = 18 nm, A = 4.4 nm); pairs of numbers on the curves (L, S;) (exact diag-
onalization) [15, 26] (a); difference between chemical potential of the interacting and
noninteracting systems and chemical potential (inset) vs. magnetic field, angular mo-
menta and spins of the single-particle states, to which electrons are added, are indicated
(exact diagonalization) [15, 26] (b).

IV. The hole structure is similar to the electron one as the strain separates
the subbands of light and heavy holes and therefore reduces their mixing, but
different parameters result: hwf ~ 15 meV (for electrons hw§ ~ 30 meV) leading
however to a similar number of confined shells as for electrons.

V. For the fields of the order of 20-30 T (at hwf ~ 30—50 meV) the transition
between singlet-ground and triplet-excited states for N = 2 can also be observed
(note however that if iw§ ~ 5 meV then this transition takes place at ~ 3 T, [17]).

VI. Proximity effects in a pair of the dots change significantly the level
structure in both dots [22].

VII. The weakly interacting excitons can be created in the self-assembled dot,
due to strong confinement both for electrons and holes and electron—hole attrac-
tion (hw§+hwl ~ 45 meV, and Coulomb energy ~ 25 meV), cf. [15, 19, 20, 23, 24].
However, for the energy of electron excitations of the order of 30-50 meV, as for
the considered dot, the strong multi-phonons mixing effects lead to the creation
of polarons (with an energy shift of the order of several meV) [25], which strongly
enhances decoherence for excitons via phonon channel.
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3. Qubit definition, single-qubit rotations, two-qubit operations

Let us focus the attention on the singlet—triplet transition for QDs. There
are two types of this transition: the transition in multi-electron dot for N > 4
accompanying the Fock—Darwin levels intersection and the transition in the case
of He dot, i.e. for N = 2. The first type transition has been recently observed by
Tarucha et al. [12, 13] for vertical, of medium size dot, cf. Fig. 3a. Let us note
that the experimentally observed behaviour (Fig. 3a) very well corresponds with
theoretical predictions (Fig. 3¢) for a similar number of electrons, though for a
distinct dot diameter.
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Fig. 3. The singlet—triplet transition (N > 4) observed experimentally by Tarucha
et al. in dot with hw§ ~ 2 meV (after [12], with Authors’ permission) (a); the simplified
two-electron model for singlet—triplet intersecting levels for N > 4 (after [12]) (b);
addition energy spectrum vs. magnetic field calculated for self-assembled dot with hw§ ~
30 meV, areas of circles are proportional to the intensities of individual transitions;

continuous lines — chemical potential [15, 26] (c).

Tarucha et al. gave also a skillful explanation of the many-particle system
transition in terms of only the last pair of electrons [12] in the case when two
various Fock-Darwin levels intersect (cf. Fig. 3b). Within this simple approach
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Tarucha et al. reproduce the same properties of chemical potential as found by
exact diagonalization methods applied up to 6 electrons [26], cf. Fig. 2, as well as
by the application of simplified Hubbard-type calculus [27].

The singlet—triplet transition for N = 2 does not accompany the crossing of
Fock—Darwin levels. It indicates rather the enhancement with magnetic field of the
exchange energy which is inconvenient for the singlet state and favours the origi-
nally excited state — the triplet one — cf. Fig. 4. This type of transition appears
at a sufficiently low field for dots with a not too strong confinement parameter,
as the critical field B*[T]~ hwg[meV]/1.6. Therefore for a vertically stacked pair
of self-assembled dots (with Aw§ ~ 30—50 meV) the transition field is in an unin-
teresting region (of the order of 20-30 T), and for these dots rather the previous
type of singlet—triplet transitions for N > 4 is attainable at lower fields — as it is
indicated in Fig. 2.
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Fig. 4. The intersections of single and triple states for He QD, (a) independent elec-
troms, (b) interacting electrons (after [17], with Authors’ permission).

In the vicinity of the transition point, the two crossing levels lay very close. As
the internal shells are completely filled and energetically distant from considered
intersecting levels, the last two electrons create the almost separated subsystem
(cf. Figs. 3 and 2). The intersecting two levels for the last electrons (e.g. in the
Tarucha model) could be treated as a qubit (similarly as the singlet and triplet
states for N = 2 near the critical magnetic field, even though in this case we do
not deal with the intersection of bare single-particle levels). Note that the Zeeman
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energy

B B magnetic field

Fig. 5. The model of a qubit in the vicinity of the singlet—triplet transition point
(scheme for He dot), the range of proper definition of the qubit is indicated on both
sides of the critical field.

splitting for GaAs is ~ 0.03 meV/T and it attains the value of 0.1 meV at 3 T.
Hence the proper definition of the qubit needs the level separation to be smaller
than the Zeeman splitting — what is attainable in the vicinity of critical field,

cf. Fig. 5.
For a further model analysis we consider the singlet—triplet transition for
N = 2 assuming hw§ ~ 5 meV. In the case of He dot the wave functions for

ground and first excited states can be approximated by the analytical formulae
given in Appendix A.

The excited triplet state, for the field smaller than the transition field, is
long living owing to spin symmetry of the wave function and corresponding selec-
tion rules. We have analysed the transitions from this state to the ground state
induced by various perturbations coupling the spin degrees of freedom, including
stochastic terms and compare them with similar transitions from a higher excited
singlet state. Within the perturbation theory the excited triplet state appears to
be extremely long living, of several orders longer than the excited singlet state.
The triplet state is split in magnetic field proportionally to the Zeeman energy (cf.
Fig. 5). Transitions between these states numbered by z components of the total
spin are also hampered by the spin-type selections rules.

The rotation of the qubit spanned on the singlet and the lowest state of the
triplet ones (with S, = —1) can be performed by the application of varying in time
magnetic field oriented parallel to the QD. The resulting Rabi-type oscillations
(Appendix B) concern only the considered singlet—triplet transition which can be
achieved by suitable tuning of perpendicular magnetic field (in order to avoid
multi-resonances with e.g. upper triplet states split by the Pauli term).

We consider also another possibility of the state evolution (i.e. qubit ro-
tation). Varying the perpendicular magnetic field one can shift the system to a
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singlet—triplet intersection point. In this point one can observe also the character-
istic oscillations of the wave function between two degenerated states (Appendix C)
due to arbitrary and even small and static perturbation (provided that V; # 0)
2

gﬂz [1 = cos(wt)], (1)
where wgy 1s the probability of transition between two degenerated states, hw =
\/(Voo —Vi1)? + 4|Vo1|?, and V;; are matrix elements of perturbation (here, the
perturbation is the longitudinal static magnetic field). By appropriate choice of ¢ it
is possible to rotate the state vector in a desired manner. If to disturb then rapidly
the perpendicular magnetic field the chosen state of the qubit can be achieved. In
the opposite case, the case of the sufficiently slow variation of perpendicular field
magnitude, the ground singlet or triplet wave function will be obtained for fields
smaller or greater than the critical one, respectively (it would be employed as the
reset procedure). Note that for N > 4 transitions, the possibility of simultaneous
observation of the excited triplet and ground singlet states (or vice versa) [12], cf.
Fig. 2a, suggests that the rapid change of the above-mentioned field can be easily
achieved in experiment.

The crucial for two-qubit operations (as the “swap” operation or CNOT
(i.e. controlled-NOT), cf. e.g. [28]) is the pair of interacting two-level systems. The
standard CNOT operation flips target input if the control input is |1) and does
do nothing if the control input is |0) (i.e. it interchanges [10) with |11} two-qubit
states). To perform this procedure two separated quantum information carriers
(qubits), which can interact in a controlled manner, are needed. As such system one
can consider the pair of QDs. For the model let us consider the pair of He dots. This
system with two electrons in each dot can be examined within the perturbation
approach of Heitler—London type. The possibility of tuning, by magnetic field, the
level separations in each qubit from very small to rather high allows us to enhance
or diminish the role of qubits coupling (due to simple energy relations). The matrix
elements of inter-dot interaction (qubits coupling) can be treated as small or big
only by comparison with intra-qubit energy level separation (as we confined the
system to only a pair of qubits). In the case when this separation is much greater
than the energy of inter-qubit interaction, the role of this interaction is practically
negligible and therefore the reconstruction of separate qubits states to entangled
state does not occur. In the opposite case when the energy levels in qubits are
located in the distance of the same order as the interaction, the four-electron
system should be considered instead of two independent two-electron subsystems.
In this case the interaction between qubits leads to entanglement of them, quite
natural for the description of the entire four-particle system.

Therefore by tuning the qubit level separation via variation of the perpen-
dicular magnetic field near the singlet—triplet transition point one can achieve
the controlled, time dependent inter-qubit interaction. It seems that this scenario
of two-qubit operations could be applied also to other concepts of qubit with a
tunable level separation.

In the case of DiVincenzo [1, 2] proposal of spin qubit on a single electron QD,
the Zeeman splitting, being the qubit level separation in that case, can be made
small or big in comparison with inter-dot interaction, via tuning the magnetic field

w01:2
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and therefore can allow or preserve the creation of entanglement of qubits states.
It actually makes the exchange interaction (the difference between the entangled
triplet and singlet states for a pair of single-spin qubits) negligible or not. In
other words, two magnetic field dependent two-particle levels, singlet and triplet,
intersect at a certain field (similarly as for He QD, even though electrons are
located in distinct single-electron dots) and at this field the qubits interaction is
switched off (we suppose here a vertically stacked dot system, contrary to the
original DiVincenzo proposal, because the axial symmetry allow in this case for
almost a direct application of methods from He QD).

Taking into account this method of two-qubit operations one could perform
CNOT operation via suitably tailoring the time dependent magnetic field shifts in
the vicinity of singlet—triplet transition. Let us underline that it is convenient to
manage with slightly distinct dots in the coupled pair (as it is actually observed
in real vertically stacked systems [10]) in order to allow the addressing, by energy,
the single qubit operations.

The other methods of two-qubit operations can be also considered for a cou-
ple of He QDs. In the case of two slightly distinct qubits in the pair it is possible to
find the magnetic field region in which the state of the first qubit strongly affects
the states of the second one allowing for conditional logic operations. The other
opportunity is to try to temporarily separate electrons in opposite sides of two
stacked dots by lateral electrical gating applied to both dots in the opposite direc-
tions. It would be however realistic for not small dots and when they are located
rather not too close. But in this case the interaction of qubits would be insufficient
to create the entangled state. Alternatively the two-qubit operations can be per-
formed also by mapping the information from single qubits (QDs) onto photons
in cavity quantum electrodynamics (QED) but an experimental realization of this
idea is not as yet completed [28].

Finally let us mention the decoherence effects. As the triplet—singlet transi-
tion needs the coupling of environment perturbations with spin of electrons, the
DiVincenzo arguments related to the smaller decoherence rate in this case gener-
ally hold [2]. In the case of singlet and triplet states we have however the coupling
between the orbital and spin structure in wave functions for these states. Therefore
we cannot consider the separate evolution of only spin structure of these functions
— such an evolution causes also a change of their orbital parts. The decoherence
via orbital parts of wave functions is highly inconvenient. These problems need
however separate considerations.
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APPENDIX A
Singlet—triplet transition in He QD

The singlet—triplet transition for He QD has been analysed numerically
in [17]. Tt is however interesting to give approximate analytical formulae for cross-
ing states which highly simplifies further applications. The He dot is described by
the Hamiltonian

. 2
h;dc liz + ghwcgiz + i_a (2)

hz 1 * 2.2
H:Z[—%ﬂi—l——mwri—l— p

: 2
=1
Z=-wl+ iwf, w, = eB/m*, p=|r — rs|, ¢ — giromagnetic factor.
In the centre of mass and relative coordinates the wave functions correspond-

ing to above Hamiltonian have the following form:

where w

N (RS (P)XE s (01, 02), (3)
where s and t indicate singlet and triplet, respectively, and
. 1
X§=0,5,=0 = 7 [x1/2(01)x=1/2(02) = x1/2(02)x—1/2(01)] (4)
Xs=1.5.=1 = X1/2(01)x1/2(02), (5)
c 1
X§=1,5,=0 = 7 [x1/2(01)x=1/2(02) + x1/2(02)x—1/2(c1)] (6)
Xs=1,5.2—1 = X—1/2(01)x—1/2(02), (7)

and

N %GN|M|(R/L) exp (iM0g), (8)

1
Vom
where L = \/h/Mw, My = 2m*, and

5 nlp) = zm<—p>:§gn|m|<p/z>%2_ﬁexp<im@p>, m = 2%, (9)
() = ~0in(=0) = {0l /) = exp (m,), m =241, (10)

where | = \/h/mow, myg = m* /2, k — integer.

The corresponding eigenenergies have the following form:
ENMnm,5S, = ENM + €nm + ghw.S,, (11)

where ey = hw(N + 1) + Mhw./2 and ¢pp = hw By + mhw. /2.
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Hence for the first pair of intersecting levels, denoted by |0) and |1}, we have

|0> = Y00®00X00, (12)
where
1
Yoo mexp(—Rz/QLz), (13)
b
¢oo = ﬁflo exp [— ! —; O(P/l)z + 2p/a] ) (14)

with a = eh? /mge?,

2(1+bo)

4= Cifaz /7 21/ ’ (15)
e exp |G (1o )| +1
here @ is the error function, and
1) = Yood1-1x1-1, (16)
where
1o = plmrexs |12 01+ 20/30] exp(—i6,), (17)
2 8(1+ b1)? (18)
L™ si/3a 2(21/3a)? (21/3a)2 /7 21/3a (21/3a)? :
1/+b1 [3 + (14/-51) ] €Xp [ 1{I-b1 325 (1 + @(\/1/4-—171))] +4 1{|-b1 +4
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Fig. 6. Comparison of analytical approach with numerical calculations for singlet (left)
and triplet (right) wave functions in He dot.
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The corresponding eigenenergies are

E
€00,00,00 = hw (% + 1) (19)
and
E hw,
€001-1.1-1 = hw (% + 1) - ‘2“ (14 29). (20)

In the above formulae the parameters by and by are treated as variational
parameters which allow for evaluation of Fyy and Fi_; with respect to magnetic
field. For various QD confinements given by hwy we determine the magnetic field
for the first singlet—triplet transition. For instance, for GaAs QD with hwgy =
17.4 meV, B* = 12 T, for wy = 5.2 meV, B* = 3.2 T and for hwg = 2.5 meV,
B* =1 T. These values correspond well with numerical results from [17].

The accuracy of this analytical approach is checked also by direct comparison
with numerical calculations, cf. Fig. 6.

APPENDIX B
Rabi-type oscillations for singlet—triplet He QD qubit

The rotation of the qubit defined by two levels — the singlet ground state of
He QD at a field in the left vicinity of the critical field and the excited triplet state
with S, = —1 at the same field — can be performed by Rabi-type oscillations.
These oscillations are the response to an external longitudinal dynamical magnetic
field which we assume in the following form:

B(r,t) = B(r)exp(—iwt) + h.c., (21)
where B(r) = (Bexp (ik-7),0,0)~(B+b-70,0), b=ikB.

This field leads to the perturbation in Hamiltonian for He QD
w = wg exp(—iwt) + w exp (iwt) (22)
and wg = geh/m* [(515 + S25)(B+ b R) + (810 — $20)b - p/2].

For |0) and |1) states described in Appendix A (0|w|0) = {1]w|1) = 0, and

(1|w|0) = wig exp [it (@ - w)] + wg, exp [it (@ + w)] , (23)
where wig = (geh/\/im*)(bx'yl/Q—iby'yl/Q), and v = fooo z2g11(x)goo(z)dz.

If we identify the qubit with the state ¢g|0) 4+ ¢1|1) then

ih% = wyp exp (iet)cg, (24)
. dCO * .
17'15 = wiyexp(—iet)eq, (25)

where € = (B, — Fp)/h — w.

The solution of the above equation has the following form:

u(t) = Aexp[i(e/2 £ 2], (26)

where u = cexp (iet) and 2 = 1/€2/4 + |wyo|2/R*.
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In resonance, when € = 0, we observe Rabi-type oscillations

[0Y(t) = |0) cos(£2t) exp(—iFot/h) — [} iw]y/|wio| sin(£2¢) exp(—iFE1t/h), (27)

[1)(t) = |0)Yiwso/ |wio] sin(§2t) exp(—iEot/R) + |1) cos(£2t) exp(—iFE1t/h). (28)

From the above formulae it follows that the probability of transition between
two states of our subspace is proportional to sin?(£2¢) = [1 — cos(£2t/2)]/2.

APPENDIX C

Rotation of the singlet—triplet qubit by shifts of perpendicular
magnetic field

While shifting the perpendicular magnetic field in the direction of the inter-
section point we transform the qubit without loosing information. When we reach
however the intersection point the new opportunity appears. In this point two
states described in Appendix A span the two-dimensional subspace corresponding
to the same energy value — it 1s a degeneracy point. In the case of the two-level
degenerated system one observes the time-dependent rotation of the state (within
the two-dimensional subspace). This rotation is induced by any static perturbation
V for which the matrix element (0|V]1) is nonzero. According to perturbation the-
ory for degenerated levels one can determine the corrections to the energy (which
remove the degeneracy), cf. [29]

AE = (VOO + V11 + hw)/? (29)

and

hw = /(Voo + Vi1)? + 4|V 2. (30)

These energy corrections lead to the rotation of the state, which can be described
by the transition probability

|Vo1]?
(hw)?

wy = 2 [1 — cos(w?)]. (31)
For small perturbations the period of transition is sufficiently long.

In the chosen moment of time one can rapidly remove the system from the
intersection point by the change of perpendicular magnetic field. In that manner
it 1s possible to map the quantum state prepared in the degeneracy point into the
qubit state with different energy levels. For a longer time (and it depends of the
choice of qubit location in the vicinity of the singlet—triplet transition point) the
qubit eventually will transform to the ground state (singlet or triplet for left and
right position with respect to the intersection point). This last procedure could be
treated as the reset scheme for a singlet—triplet QD qubit.
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APPENDIX D
The vertically stacked He QDs

The Hamiltonian for this system is given by

H = Ho(ry,m2) + Ho(v), 7h) + w(ry, ra, 7, 75), (32)
where Hy is defined for a single He QD in Appendix A. The interaction term
( ) 2 2
w(ry, reo, v, ) = +
B O e R (AL
2 2

[ [

_|_

+ , (33)
e/ (ra — )2+ 22 ef(ra — )2 + 22
where z is the vertical separation between dots. The perturbation with respect
to w(ry, re, 7, 75) reproduces the Heitler-London approach for molecules. As the
zeroth approximation we take states of two separated dots truncating the corre-
sponding Hilbert space to only two lowest states (singlet and triplet ones). The
perturbation is simple if we take only the S, = —1 triplet state. When, however,
the levels separations in QDs are of the similar order as the interaction w then
the perturbation methods cannot be applied. In this case we deal actually with
strongly interacting four-electron system. In the case when two coupled dots are of
a distinct diameter (which allow for a single qubit addressing by energy) by tuning
magnetic field we can achieve the various interlevel energy distances and it is pos-
sible to affect levels significantly by the interaction w. In particular it is possible
to arrange the conditional separation of levels in one dot with respect to the state
occupation in the second dot. Note that if the Zeeman splitting is of the order of
interlevel distances, then three components of triplet state have to be taken into
account (then the state of four electrons in the system can be numbered by the
total spin S = 0, 1,2 with corresponding S, components split by Pauli term).
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