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On the basis of the data reported by Flint and Paulusz, we have un-
dertaken a theoretical investigation of the intensity mechanism for the var-
ious emissions: [§( 2ng) — I 4Azg), F3(2Eg), Is( 2T1g), F6(2T1g) for the
Cs3NaScClg:MoCIZ™ system in the F'm3m-space group. The experimental
data available refer to the visible and near infrared luminescence spectra of
MoClLi~ complex ion in different hosts, such as Cs;NaMCls (M = Sc, Y,
In), measured between 15,000 cm™! and 3,000 cm™ at liquid helium tem-
peratures. At least, five luminescence transitions have been identified and
assigned and each of them show extensive vibronic structure. A careful anal-
ysis of this experimental data shows that for the various observed electronic
transitions, the vibrational frequencies change only slightly, and therefore
there is no indication that the system undergoes both a significant and rel-
evant Jahn—Teller distortion (along an active coordinate). There is however
clear evidence that for the chloro-elpasolites, there is a strong resonance in-
teraction between 1/3(T1u : stretching) of the Moxg_, complex ion and that
of the host when M = In, Y. Thus for M = Sc, the slighter higher host v,
wave number 1s likely to minimize the effect of this coupling. This evidence
will allow us for the Css NaScClgzMoClg_ system to neglect, in the first-order
approximation, the coupling among the internal and the external vibrations
and to proceed using a both a molecular and the independent system models.

PACS numbers: 32.70.Fw, 32.70.Cs

1. Introduction

The lattice CssNaMXs belongs to the space group Fm3m(O3?) [1-3], in
which the M3t ions occupy sites of perfect octahedral symmetry. The vibra-
tional symmetry species for this lattice are as follows: Nal*(ry), CSH'(ng—I— Tiu),
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MX‘Z’_ (ozlg +eg+ 20+ g+ Tou). As we can see, in addition to the 15 degrees of
freedom of the MX‘Z’_ complex ion, distributed into the irreducible representation
of the Op-point molecular group (as given below), there are four lattice modes of
symmetries: 2Ty (IR active), Tog (Raman active) and g (inactive). Lentz [4],
in a magnificent paper, discussed the lattice vibrations for both the A3B’Xs and
A9sBB’Xg, in the space group Fm3m and using a modified version of a valence
type of force field, concluded that ten force constants should be known to estimate
all the fundamental vibrations in the & = 0 approximation.

In the notation put forward by Lentz, the symmetry coordinates correspond-
ing to the unit cell are labelled as follows:

Sl = Sl(X) C g, Sz = SQ(X) L Eg, 53 = S3(X) cTlg, 54 = S4(X) - T2g,
Ss = S5(Cs) : T, S = S6(M,X,Na) : 11y, S7 = 57(M, X, Cs,Na) : 7y,
Sg = SS(M, Na) T, Sg = Sg(M,X, Na, CS) Ty, SlO = Slo(X) L Tou-

When this notation is adopted, it is clear that the symmetry blocks are as
follows: aig(1x1), eg(1x1), T1g(1x1), mu(4x4), 72g(2x2) and 714(1x 1), and hence
the odd parity symmetry coordinates (S) are related to the normal coordinates
(@), by means of the transformations:

(A) the 7, symmetry block

Set Les Ler Les Leg ors
St} | Lwe L7t Lrs Lo Qs
Sst |\ Lse Lsr Lss Lso Qss
Soy Los Lo7 Log Log Qoy

(B) the 1, symmetry block
(S10t) = (L10,10)(Q10t)

fort =a,b,c.

It is interesting to make a few comments with regard to the transformations
given above. For the 7 ,-symmetry block there is an obvious coupling among the
internal and the lattice vibrations, being the extension of this mixing determined
by the details of the interacting vibrational force field. It is also to be noticed
that we have not included in this preliminary analysis the long range Coulombic
interactions.

A proper treatment of this problem is to actually solve the dynamical equa-
tion of motion [5-7]

D(k)E(k) = E(k)2*(k).

In this notation, £2%(k) is a diagonal matrix whose eigenvalues are wzk, and F(k)
represents the matrix of the eigenvectors e, (ui|pk). The lattice sums are evaluated
using the Ewald method [8, 9]. A full discussion of the lattice dynamics as applied
for M2XYg type systems in the F'm3m-space group may be found in Refs. [5, 6, 10]
and the advantages and disadvantages of the model calculations putforward are
discussed in detail. Though, it is worth mentioning that the experimental data
available to undertake full lattice dynamic calculations 1s either incomplete or
scarce. Only, very rarely we will have a large enough and accurate data base to fully
test the theoretical models against the experimental data for these systems. We
have initiated a program to undertake these kind of calculations for the elpasolite
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type systems and works on the pure Csy;NaErClg, CssNaEuClg, and CsosNaMoClg
crystals are in progress [11]. It is well known that the set of symmetry coordinates
does not represent the normal modes of motions for the crystal, then it is necessary
to solve the dynamical equations of motion so that to have a semiquantitative
idea about the mixing of the various symmetry coordinates belonging to the same
symmetry species, so that to give support to assignments of peaks in the spectra
for these crystals. At first glance, the pure symmetry coordinates representing
internal motions of the cluster MOCI‘Z’_ are: Si(ang @ v1),Sa(gg @ v2), Sa(Tog : 1s)
and Sio(72u : vs). The standard vs and v4 are mixed up with the counter ion
motions, and therefore at this stage it does not seem convenient to adopt the
convention Se(7Tiu : v3) and S7(7iy : va), unless we have solid evidence of either
a small or negligible coupling among the internal MoC12~ vibrations and those of
the counter ions [10-15].

In this research paper, we will introduce a molecular model for the MOCI‘Z’_
complex ion, and will assume that the coupling among the internal and the external
vibration is weak enough, though we recognize the importance of carrying out a full
lattice dynamic calculation for this system. The results to be obtained will crucially
depend on the assumption adopted in the model calculation, though they will serve
as a basis for both a more comprehensive and sophisticated understanding of these
complex phenomena in the solid state spectroscopy.

2. Theoretical background and model calculations

In this section, we shall provide the reader with a summary of the symmetry
adopted vibronic coupling theory as employed for the elpasolite type system, within
both the seven-atom system and the independent system models. Judd [16] and
Ofelt [17] put forward a formalism to account for the observed spectral intensities
in noncentrosymmetric LnX‘Z’_ complex ions. Both authors worked out master
equations to deal with the crystal field contribution to the total transition dipole
moment and the basic assumption was that an f — f transition acquires its
intensity from either an f — d and/or an f — g or both, excitations through the
odd parity components of the crystal field potential. In this formalism, the integral
chains are in the first-order approximation of the forms

(flu i (0dd)){¥i (0dd)[VET (0dd)| f)

and

(VT (odd)|i(odd)) (v (odd)|u|f),

where the intermediate odd parity central metal’s wave functions have been labeled
as ¥;(odd). Also, in the integral chains, there is a summation over all these odd
parity states, and when closure is adopted, 1t is assumed that there is a complete
and orthonormal set of wave functions, and all these infinite sets occur at the same
energy, say (AE). Thus, it is straightforward to show that under these constraints,
the a-th vector component of the crystal field (static) transition dipole moment
becomes

a ~ 2 a o
Hio = E (Llp V( dd)|2>~ (2)
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In the above identity, we have assumed that the condition

(o]

> Iti(odd)) (i (odd)| =

i=1
is fulfilled. It is important to fully understand the nature and the origin of the
approximations involved when closure procedure is employed. To a first glance, it
does seem that when this approximation is invoked, the nature of the intermediate
odd parity central metal’s wave function becomes irrelevant except of the choice of

the effective energy gap (AFE). We certainly never employ a complete set of wave
functions, at the most we use a truncated set of functions and in explicit direct
calculations we evaluate the integral chains either for a subset of d-states (I = 2)
or for a manifold of g states ({ = 3).

It is currently, in the literature, to use some kind of average energy for (AFE),
corresponding to a “virtual electronic transition”, allowed by both spin and parity.
For d — d excitation the value used is about 100,000 cm~!, whereas for f — f
we currently use values ranging from 50,000 cm~! up to 80,000 cm~! [18-24].
A series of pioneering works for both centrosymmetric and noncentrosymmetric
complex ions of the lanthanide trivalent ions have been put forward by Richardson
et al. [25-29] and a fair degree of success has been achieved. We have, instead, used
a model calculation based upon a few number of parameters to be fitted from the
experimental data [18-23]. Our strategy is largely based on the well known fact
that for most of the systems of interest, the data base is either scarce or incomplete
and therefore it 1s essential to model vibronic intensities with modified versions
of current vibronic models. We have recently completed a work on the vibronic
intensities for several selected absorption in the Cs;NaTmClg, for which a very
careful and updated data base is available from infrared, Raman and luminescence
spectra [19]. For this system, the calculation has been carried out using a modified
version of the crystal field-ligand polarization formalism and as it will be shown
the success achieved is more than satisfactory for a simple model, with a few sets
of adjustable parameters.

The fundamentals are such that the total potential is written using the ten-
sorial form worked out by Carlson and Rushbrooke [30] as

kit+k
v= Y 1) (R 60, ¢10) D8 (Oa, ) DE (61, 1) (3)
L kiq1,k2g2
and in terms of potential, we may write an explicit first-order vibronic correction
terms, as given below

A = v+ v, (4)
where 1t is straightforward to show that the following identities hold:

==Y Y Y (M) e, (a1

ve I'yi 7T
and also

1 aF’YQZT Iy a
;ezzzzz(G ﬂm@wum, “2)

ve I'y i1 «
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Thus, for the vibronic crystal field contribution to the total transition dipole
moment, we may write the master equation

il llay — ()] = 3 USE* Lt (01Qu 1)

m

(for the v4-th normal mode of vibration), (5.1)

where the electronic factor USH® may be defined as [31-33]

U,gF’a:ZZCI?F(_l)FI-I_’YTV(]}' Iy ;)Ayfj(k—l,T)

= kb Y172
x((LSI)I1 || OF (k, ) || (L'SJ') ) (5.2)
and also
L U R (5.3)

T ABRT)

TABLE 1
Vibronic coupling coefficients.
CE*: ALL(j)
I Vs V4 Ve
j=1 T 212 V2 0
Ty 0 0 0
j=3 T 4/2 —32—2 0
Ty 0 0 @
LP: BLYTO(k)
k=2 B 12v2 | -22 | 0
BE=? 0 0 5%
Bpely = =Bt | VB | =20
piyt=nrne| o | o | ep
k=4 Bpig? pVA2 | 22 0
BES? —5v30 | 42 | 0
Biao’o 0 0 . 21\4/E
B = Spft | ayT | 2B | g
Bpll=—Bpoatl 0 |0 | -
B B0 5T | aviD |
e e I

*The above listed values are independent of the
components of both the 77 and 7% irreducible
representations.
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TABLE 11

Overall oscillator strengths and relative vibronic intensity distributions [1].

(1.1) The FS(ZTQg) — F3(4A2g) transition

(1.1.1) Dipole strengths for the FS(ZTQg) — I5( 4A2g) + vi(k = 3,4, 6)transitions

DCF DLP D(CF,LP) DTotal Notes
vs | 1.55x 1072 | 7.64 x 107% | —2.18 x 10™* | 1.34 x 1072 The values are
vy | 815 x107* [ 1.25 x 107* | —6.40 x 10™* | 0.30 x 107 given in units
ve | 9.97 x 107 | 410 x 10=7 | +4.04 x 10~ | 1.04 x 10~2 of Gy = 224%)

(AB)RD

(1.1.2) Total oscillator strengths and relative vibronic distribution

Flva) =1.05 x 107°%, f(va) = 2.32 x 1077, f(ve) = 8.03 X 1077, frotar = 2.09 x 107°

f(va): f(va): f(ve) = 4.53:1.00: 3.46 [exp : 5.50 : 1.00 : 5.00]

(1.2) The FB(ZZ—‘Qg) — FB(ZZ—‘lg) transition

(1.2.1) Dipole strengths for the FB(ZZ—‘Qg) — I 2T1g) + vi(k = 3,4, 6) transitions

DCF DLP D(CF,LP) DTotal Notes
Vs 17.9791 4.36012 +17.70774 40.04696 The values are
vy 16.7892 4.85330 —18.05360 3.5889 given in units
_ 2%¢(r)
Ve 2.0192 0.21068 —1.30445 0.92543 of Cy = DR

(1.2.2) Total oscillator strengths and relative vibronic distribution

Flra) =113 X 107°, f(va) = 9.846 X 1077, f(vg) = 2.522 X 1077, frotar = 1.25 X 107°

f(va): f(va): f(ve) =44.79 : 3.90 : 1.00 [exp : 20.00 : 1.00 : 5.00]

(1.3) The FB(ZZ—‘Qg) — F3(2Eg) transition

(1.3.1) Dipole strengths for the FB(ZZ—‘Qg) — I 2Eg) + vi(k = 3,4,6) transitions

DCF DLP D(CF,LP) DTotal Notes
Vs 8.4718 1.2816 +6.5902 16.3436 The values are
Vs 0.0482 1.7594 -0.5821 1.2255 given in units
_ _ 2e2(r*)
Ve 3.3550 0.3180 2.0654 1.6076 of Oy = (ABVRS

(1.3.2) Total oscillator strengths and relative vibronic distribution

Flva) =476 x 1078 f(va) = 3.50 X 1077, f(ve) = 4.51 X 1077, frotar = 5.54 x 107°

f(va): f(va): f(ve) =13.54 :1.00:1.30 [exp : 0.30 : 1.00 : 16.50]

(1.4) The FB(ZZ—‘Qg) — FB(ZZ—‘lg) transition

(1.4.1) Dipole strengths for the FB(ZZ—‘Qg) — I 2T1g) + vi(k = 3,4, 6) transitions

DCF DLP D(CF,LP) DTotal Notes
Vs 6.4786 0.2927 +2.7542 9.5255 The values are
Vs 9.8222 0.0380 -1.2220 8.6382 given in units
_ 2e2(r")
Ve 0.5750 0.9848 -1.5043 0.0551 of Oy = BBE

(1.4.2) Total oscillator strengths and relative vibronic distribution

Flva) = 2.60 x 1078, f(va) = 2.30 X 107°, f(ve) = 1.45 X 107%, frota = 4.92 X 107°
f(va): f(va): f(ve) =197.31 : 158.62 : 1.00 [exp : 2.90 : 1.00 : 2.20]
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As for the ligand polarization contribution to the total transition dipole
moment, we write the identity given below

ﬂftpa — ()] ZULPaLmt 0lQv, 1)

(for the v4-th normal mode of vibration) (5.4)

and the ligand polarization electronic factor becomes
NIy I

ULP« =N "N ofP(-phiy ( P2 )
: e =1 W v

x((LST)Iy || My, (k) || (L'ST') o) By (k). (5.5)

The reader may obtain all the relevant tabulations of the above reduced
matrix elements, upon request from R.A. (The vibronic crystal field and ligand
polarization coupling magnitudes are listed in Table I, whereas in Table II we
display our final overall and relative vibronic intensities for four selected emissions
in this system.)

3. Results and conclusions

To advance in the understanding of the observed spectral intensities in these
elpasolite type systems, we have initiated a program to rationalize the coupling
among vibrational modes of the symmetry in the crystal. In the classic paper by
Lentz [4], this author pointed out that by means of group theoretical considera-
tions, both the Mo®t and Na'T ions are bonded octahedrally to six C17! ions,
while the Cs't ions have the coordination number 12 to the Cl=' ions and lie
in the tetrahedral holes of Ln3* lattices. The Cs't ions occupy tetrahedral holes
with respect to both the Mo+ and Na't ions. Also the static selection rules in-
dicate that, within the framework of the & = 0 approximation, these compounds
should have four Raman active a1y, €, and 2794, and four infrared active 471y
vibrations. Both, the 714 (rotatory mode) and the 79, vibrational modes are both
inactive in the Raman and infrared spectra. It 1s accepted that with a high cova-
lent bond character between Ln3* and C1~ ions, stretching v(Mo-Cl) and bending
§(Cl-Mo—Cl) vibrational modes for the MOCI‘Z’_ groups may be separated in dis-
cussion from the remaining lattice vibrations. Next, a set of internal coordinates is
introduced, and they represent the various possible interactions among bonded and
nonbonded atoms in the crystals. For the sake of the argumentation, we further
give the set of internal coordinates which are convenient to describe the lattice
dynamics for this system. These are the following: (a) {Ar; : r = r(Na—Cl)},
(b) {AR; : R = R(Mo-Cl)}, (¢) {AD; : D = D(Cs—Cl)}, (d) {Ag¢; : ¢ = q(CI-Cl),
nonbonded}, (&) {Aa;jp 1 @ = a(Cl-Mo-Cl} and (f) {Agijk : 3 = 3(Cl-Na—Cl}.

When a 27-atom model is used, then the atom numbering is as indicated in
Fig. 1:

(A) Nalt - (8,17,18,19,20,21)

(B) C1~1 :(1,2,3,4,5,6,17,2/,3',4' 5 6)
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(C) Mo3+ : (7: reference atom)

(D) Cstt :(9,10,11,12,13,14,15,16).
This model may still be simplified further, when the redundancies are excluded.
The simplest model contains 10 atoms, as used by Lentz [4], who also informed
about a set of linear combinations of Cartesian nuclear displacement coordinates
for the ten-atom system, though the projection along the three polarization di-
rections has not been done properly. It is also to be noticed that the Cartesian
nuclear displacement coordinates do not form a complete and orthonormal set of
coordinates and therefore, the S, coordinates are not the symmetry coordinates.
Nevertheless, a more complete work on the lattice dynamics for these elpasolite
type systems is in progress in our group. It is interesting to observe the number
of interactions which are neglected when a seven-atom system is adopted.

e —ﬁ‘:21 3
Tig- R @ !
! @ Mo
3' ! @Na
10 b
3 o I ®cs
® 3 @ : @Cl
1' 17 5 :
)2 @ 4
18 5 “l7 1 %l
4 [
3 b " o
P 1 319 Il P!
=3
15 B' 14
® A
' 16 13 %
® @
—————— L Rt LE EE L= Errny _§
4 (3 0
o & 5 o
e "o

Fig. 1. Twenty seven-atom model.

There 1s however a necessity of more theoretical work on this research area,
leading to the modeling of the interacting vibrational force field, the long-range
Coulombic sum lattices and the phonon dispersion curves along all relevant polar-
ization directions. The problem of the understanding of the dispersion phenomena
1s a question still open to discussion, and the answer to all the outline issues does
not necessarily lie on full parameterization schemes, which ultimately obscure both
the physics and the chemistry of the very problem we want to solve.

The results obtained, using our seven-atom system model, are as good as
could be expected for this simple calculation model. It is also to be added that,
in spite of the apparent simplicity of our model calculations, our strategy and
modeling seem to be most appropriate and suitable to gain understanding on these
complex radiative processes. The deviation from the experimental results, for some
of the selected emissions may be explained on the basis of the model and many
necessary simplifications used throughout the course of the current work. There are
several ways to improve the calculation, though at this point we feel that a more
complete data base of fairly accurate data is needed to account for the observed
overall and relative vibronic intensities due to several emissions. The calculation is
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somehow very successful, since it is transparent (just a few parameters are adjusted
from experimental data) and flexible. We strongly believe that this type of explicit
algebraic calculation may be used as the basis for future more elaborated models.
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