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In this research paper we examine the role played by the bending vibra-
tional modes of motion, §(Cr—C-N) to influence the observed overall and rel-
ative vibronic intensity distribution for the 2F, — *A,, phosphorescence of
the Cr(CN)2~ complex ion. The calculation was carried out assuming both:
(a) a seven-atom system model (molecular approximation) and (b) a neg-
ligible distortion from the octahedral symmetry for the system. The ligand
polarization formalism was employed with reference to this system, since
the ligand subsystems (CN)™! are highly polarizable and as a consequence
a conventional crystal field calculation would be both unrealistic and unap-
propriate. This system was chosen since there is a solid evidence to conclude
that vibrations of the same type in the 7, and 72y symmetry blocks in-
duce comparable intensity. This is a clear indication that both the 7, and
T2u: 6(Cr—C-N) bending vibrations are exceptionally efficient to promote this
radiative transition. This dynamical model is tested against the experimen-
tal data and it 1s shown that the model calculation, though approximate,
gives results in excellent agreement with experiment.

PACS numbers: 32.70.Fw, 32.70.Cs

1. Introduction
The By — *Asg polarized luminescence spectrum of the Cr(CN)‘Z’_ complex

ion in a single crystal of the four layered orthorhombic polytype of KaCo(CN)g
have been measured at temperatures of 5 K and above by Flint and co-workers [1-3].
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This phosphorescence is exceptionally strong and well resolved and over 11 lines
may be observed in the spectrum. The allowed excited ?Ey of this complex ion is
split however, by approximately 49 cm~"! due to both spin—orbit coupling and the
low site symmetry (Cy), but at 5 K just the lower of these states is populated. In
the current work and for the sake of simplicity we shall neglect the distortion giving
rises to the group—subgroup chain SO3 D 0O, D0 D ... D 59 = C; D (1, then we
will assume that the Cr3t occupies sites of octahedral symmetry. This is indeed
a crude approximation to adopt since the experimental evidence is clear to show
a degree of distortion. Several studies on the crystal structure for the KoCo(CN)g
system have been performed by several authors [4-10]. More recently, Artman et
al. [9] reported the KaCo(CN)g is polytypic with two unit cells predominating (one
orthorhombic and the other monoclinic).

The monoclinic space group is that reported earlier P2;¢(C%,), while the
orthorhombic unit cell is currently somewhat more prevalent [9] and falls in the
space group Pnca(Di}). The resulting unit cell groups may be correlated to the
Co(CN)z? site group and the isolated ion group (Op), by employing standard
correlation tables. It is interesting to observe that for the monoclinic structure,
the site group is C; = Sa, while for the orthorhombic structure the site group is
C5. In the former case, the unit cell group is Cay, while in the latter case the unit
cell group is Day,.

For the monoclinic structure, since the site group is C; and all the odd
parity vibrations of the isolated ion group (Op) are infrared active (o), it follows
that the even parity vibrational modes of the isolated ion group will be infrared
inactive (o). Besides, under the unit cell group Cap, the isolated ion’s vibrations
T1y and T, will each split into three components, one of them polarized along the
z-axis and the other two being polarized in the zy-plane. Furthermore, under the
Dsp, unit cell group, all the vibrations of the isolated ion have an infrared active
component. For instance, the a1, and the €4 vibrations of the isolated complex ion
will have an infrared active component polarized only along the z-axis. All other
vibrations of the complex ion have three infrared active components and they are
polarized along each of the three crystal axes.

Bearing in mind these selection rules and the assumptions involved on the
choice of a molecular model (an octahedral site symmetry with the neglect of the
descent of symmetry), we have (in the first-order approximation) attempted a vi-
bronic calculation for the ?Ey — %4, phosphorescence. Additionally and in order
to justify the use of a molecular model, we have neglected the coupling among the
internal and external vibrations. We will perform a ligand polarization calculation
to estimate both the total and the relative vibronic intensity distributions due to
the odd parity vibrational modes, based upon the highly polarizable character of
the ligand subsystems CN'~. To perform a complete calculation, including the
crystal field contribution to the total transition dipole moment, major changes
and sophistication should be included in our model calculation. Firstly, a reliable
set of atomic charges should become available. Secondly, the motion of the lig-
and lone pair, out of the internuclear axis Cr—C should be included explicitly (the
symmetry coordinates should be modified so that to include the ligand lone pair
motion). Finally, a full lattice dynamic calculation in the proper symmetry space
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group should be carried out. This is indeed a major task, and as far as we know
the experimental data available for this system is both limited and scarce. At
this stage, we have decided to use a simple model based upon the experimental
data available for this system so that to study the role played, in the intensity
mechanism, by the ligand subsystems-framework coupling vibrations.

There has been an extensive discussion in the literature about the role played
by the ligand subsystems, the framework, the coupling among the ligands, and the
framework vibrations in the intensity mechanism for vibronically allowed electronic
transitions in coordination compounds of the transition metal ions [17-25]. Also,
a particular and very interesting discussion has been attached to the role played
by the ligand lone pair to the intensities observed in the spectra of a series of
coordination compounds of the type Cr(NHz)2%, Ni(NH3)2T, Cr(CN)3~ | ete. For
all these complex 1ons, the ligand motions out of the internuclear axis, particu-
larly when bending and/or a rocking vibration takes place, seem to be a rather
important idea to rationalize the observed vibronic intensities [22, 26].

It is also important to mention a few words about the substantial amount of
work done for the f — f, electronic transitions in the lanthanide type systems. A
relevant piece of work, regarding the role played by the internal ligand vibrations
(ligand subsystem vibrational modes of motion) as far as the vibronic intensity
mechanisms are concerned for these kinds of crystals may be found in Ref. [27].
The main purpose of the work carried out by Strek and Sztucki [27] was to de-
rive novel expressions for the amplitudes of vibronic transitions combined with
the internal ligand vibrations. They found that the second-order theory fails to
explain the presence of high-energy phonon side bands related to these vibrations.
The nonvanishing terms are derived from third-order perturbation calculations.
This suggests that the vibronic lines associated with ligand vibrations should be
weak. A good experimental evidence can be found in a classic paper by Flint
and Greenough [1], who found that in a series of Cr(IIT) complexes in octahedral
symmetry, the ligand modes involving vibronic origins are two or three orders
of magnitudes weaker than the metal-bond-involving vibronic. Nevertheless, the
results provided by Flint and Greenough are in contrast with that of Berry et
al. [28] for Eu(AP)sX3 type systems, where strong ligand-mode-involving vibronic
lines were observed. Also, similar observations of strong vibronic were obtained
for Eu®t in LaVOy [8]. In this latter case, it has been shown that the mechanism
of vibronic transitions in these systems should be associated with the creation of
Ln3t pairs. Thus, the reader can find several examples regarding both pure frame-
work and ligand subsystem vibrations, so that a careful and detailed study of the
role played by the coupling among the framework-ligand subsystem vibrations is
needed to advance the state of the art in this field of research.

2. Preliminary remarks

Within the framework of the ligand polarization model [17, 26, 29, 30], it
is essential to know the perpendicular and the parallel components of the polar-
izability second rank tensor for the ligand subsystems. It is important to have a
good estimate of the values of the different fragments of the molecule, such as
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atoms, bonds, and functional groups. A view that has prevailed for quite some-
time is that the polarizability of a molecular system is additive in character, that
is the sum of the polarizabilities of the parts [11]. This is based upon the finding
that the molar refraction which is proportional to the molecular polarizability is
an additive property, that is the various atoms and functional groups in a given
molecule may be assigned refraction values whose sum over the whole molecule
is the molar refraction and therefore the value for a given group or atom is fairly
constant for a variety of molecules. Extensive tabulations of additive atom and
group refractions are available in the literature [11, 12]. The additivity hypothesis
has been extended to provide polarizability values for various bonds and functional
groups [13, 14]. Thus polarizability tensors have been ascribed to various bonds
and functional groups according to the hypothesis that component wise addition
of the group tensor gives rise to the molecular polarizability tensor. Nevertheless,
the additivity hypothesis may be criticized on the grounds that it neglects the
interaction among the group in a molecule, for instance those that derive from the
electric field are still unclear.

It was the failure of these various optical rotation calculations that led to a
re-examination of the validity of additive values for the polarizabilities of atoms. In
the atom—dipole interaction model [15] for the polarizability of atoms, the molecule
is regarded as a rigid arrangement of N-units each of which has a polarizability
concentrated at a particular point in the space. The particular atoms are taken
as “units” and their polarizabilities are taken as being placed at the nuclei. If the
polarizability of the ¢-th unit i1s «;, then the induced dipole moment p; in the i-th
unit, to a first-order correction is as follows:

pi=ai | Ei— Y Ty |, (1)
J=1G#0)
where E; is the applied electric field at the 7-th unit and 7;; is the dipole field
tensor whose matrix representation is

e 1.2 ap- .
" TiTj — 3T ;Y T;%;
I e ag 1.2 o
T;; = _7°5 YiZ; YiY; — 3755 Yizj ) (2)
ij . s S
LT 2Yj iz — 573

where r;; represents the distance among the i-th and the j-th units and =z,y,
and z are the components of a vector from the i-th to the j-th unit in Cartesian
coordinates (reference frame with respect to the molecule). Also in Eq. (1), on
the right-hand side of this equation, the quantity in brackets represents the total
electric field at the i-th unit and has taken into account the applied field and the
field due to all the other induced dipoles. Also, effects due to residual (permanent)
electric dipoles have not been taken into account as they are not expected to affect
the net induced moment by the external field.

Thus, Eq. (1) may be written in matrix notations as given below

Ap=E, (3)
where A is a 3N x 3N matrix, and g and E are the corresponding 3N x 1 column
vectors. Next, let us define B = A~! and obtain the identity

p=BE (4)
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and therefore, we obtain

N
Hi = ZBZ']'E]'. (51)
ji=1

Next, if the molecule is placed in a uniform field, then £; = F, for all j-values,
and Eq. (5.1) becomes

N
pi=>_ BiE (5.2)
j=1

and the total induced moment in the molecule, is then given by the identity

N N N
ol = ZM = ZZszE (5.3)
i=1

i=1 j=1

and therefore, the polarizability tensor becomes

Qmol = Z Z B;;. (5.4)

i=1 j=1

In the case of a diatomic molecule of the AB type, whose isolated atom
polarizabilities are as and ap, the diagonal form of the apg has two compo-
nents « and a, parallel and perpendicular to the bond axis, respectively. It is
straightforward to show that the following identities hold:

(aA + ap + 4“”‘3)

r3

(- 423%)

(6.1)

A=

and

(aa + ap —29488)

r3

(1 - =%2)
Here r stands for the bond distance A—B. Therefore, for a heteronuclear diatomic
molecule, this molecular identity becomes anisotropic even though the atoms A
and B are isotropic. The predicted polarizability, furthermore of a molecule parallel
to 1ts long axis is generally greater than the perpendicular one and deviations
from the additivity of the polarizabilities will become large so long as the atomic
polarizabilities approach r3. In Ref. [15] the authors list the polarizability values
for a number of atoms in several polyatomic molecules at the sodium line D line
(5.894 A) It follows that the atom polarizability values within the assumption of
the additive model are greater than those of the atom dipole interaction model.
It is important to refer the reader to Ref. [15], where several inadequacies of the
additive model are fully discussed.

Bridge and Buckingham [16] examined the polarization of laser light scat-
tered by gases and illustrated that the depolarization ratio was determined by the
anisotropy k of the molecular polarizability tensor. They define

(o171 — 04)2 + (a2 — 04)2 + (o33 — 04)2
6o ’

(6.2)

Qx| =

K = (7)
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Here «q1, as9, and ass are the principal polarizabilities of the molecule and «
stands for the mean polarizability value, given by

1
o= g(a11+0é22+0é33)~ (8)

The above magnitudes are functions of the frequency of the incident light. For a
linear or symmetric top type molecule, Eq. (7) may still be simplified further to
give

_ (o —ay)
k=l (9)

Since the mean polarizability can be determined from the refractive index
of a gas, the measurements of the depolarization ratio determines the magni-
tude of the anisotropic component of the ligand polarizability tensor, defined as
pa = a — ap. In current experiments, the orientation of the gas molecules is
measured through birefringence proportional to Sa. These authors [16] measured
the depolarization ratio and derived polarizability anisotropies for the 6.328 A
line, for a series of diatomic and polyatomic molecules. These values are not avail-
able for the CN~! subsystem ligands, and therefore a calculation based upon the
atom—dipole interaction model is needed.

In the current research work, two models were considered in calculating po-
larizabilities. Firstly, the CN groups were treated as a diatomic molecule and
finally, the polarizability eigenvalues were derived from the experimental data
for the CH3CN molecule [15]. For the former case, the calculated values are
o) = 1.6099 A3 and o, = 1.0087 A3, Therefore, for ac = 0.700 A?’, aN =
0.450 A3, Ba = 0.6003 A3, o =1.210 A% and k = 0.1664.

Besides, we repeated the calculation for the CH3CN [15], and our best
fit was achieved for o) = 4.8833 A3 and o« = 2.100 A3. These gave rise to
similar values as those of the diatomic model system, reported in this section.
The values for CO have been reported by Bridge and Buckingham [16] to give
a = 1.970 A3, Ba = 0.530 A% and k = 0.089, whereas the calculated values us-
ing the current atom—dipole interaction model [15] give: o = 1.7677 A3, Ba =
0.7786 A% and k = 0.1468. (The atom polarizability values used are as follows:
ac = 0.615 A% and ao = 0.434 A3 [15].) This simple calculation provides a fairly
good support for the calculated polarizability values for the molecular fragment
CN. In this agreement, we recognize that the values for the second rank tensor
components depend on both the wavelength of the incident light and the chemical
environment.

3. The coupling among the ligand-framework vibrations

3.1. The transition dipole moment in the ligand polarization formalism

Within the independent system model (ISM), the first-order correction, in
the basis of nuclear Cartesian displacement coordinates sy, and sps, to the vibronic
operator is currently written as given below [17, 19, 20, 30]
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HY =S (s —sa)Ve | Y. DEv(M) S GEP (D)o (L)

L k1,01 a=z,y,z

= Z (s —sum) > DEx(M) D [ViGEE (D)]u*(L). (10)
ki,q1 a=x,y,z
In the above 1dent1ty, the geometrical dependence of the interaction among the
central metal and the transient induced ligand dipoles i1s afforded by the ligand
polarization geometrical factors Gk . a( ), which have been tabulated by Acevedo
et al. [30].
Thus, the S-th component to the transition dipole moment associated with
the |0) — |a) is given by the general identity [17, 19]

2E,
Moy =—>_ Tz 251 = sm) > (Mo|DEr(M)|M,)

120 ! a k1,91
X Z VLGk1q1 s(L )]Ngl“gr (11)
b=x,y,z

In the above identity, the transient induced ligand dipoles p® and p’ refer to
the G-th and the a-th polarization directions in the complex molecule based on a
coordinate frame with the metal ion centered at the origin.

Generally speaking, the symmetry axis of a cylindrically symmetric ligand
(the cylinder axis) has an orientation neither parallel nor perpendicular to the
principal coordinate frame of the metal complex as a whole (z,y, 2). Tt is very
often necessary to resolve the induced ligand dipoles p? and u® vectors referring
to the (z,y, %) frame into components referring to the (2’,y’,#’) frame of the
particular ligand subsystem. For our purposes, we shall regard the CN groups to
be cylindrically symmetric, so that the #' and ¢ directions are equivalent and both
being perpendicular to the cylinder axis z’. Under this assumption, we choose the
z' and y' directions in such form to simplify the transformation from the (z,y, z)
frame to that of the (2, ¥/, #') ligand frame.

This transformation matrix generally involves the three Euler angles, but
the assumption of cylindrical-ligand symmetry reduces this number to two, as z’
and ¥ are chosen so that the third angle vanishes identically. Thus, the two angles
retained are those of the standard transformation from Cartesian to spherical polar
coordinates. When this transformation matrix is employed, the p?p® products
occurring in the above equation in the (z,y, z) frame become sums of products
in the (2’,y, 2") frame. Thus, we define [19] the nonvanishing components of the
ligand polarizability tensor as follows:

9B ..
O[” —OZZ/Z/ :Zm“io”Z (121)
l#o l a
and also
2F, /
Q] = OZ;,/Z,/ = a;/y/ == Z mh’té_l 2’ (122)
1#£0 @

where | is either 2’ or ¢/, respectively, and the anisotropic component of the ligand
polarizability tensor is given by fa = o) — .



222 R. Acevedo, M. Passman, G. Navarro

3.2. Normal coordinate analysis for the CT(CN)‘Z’_ complez ton
i the octahedral point molecular group

In the octahedral point molecular group, the assumed nuclear equilibrium
configuration is given in Fig. 1. General and well known symmetry adapted selec-
tion rules indicate that the normal modes of vibrations for this system transform
as given below [4, 5]

Fvib = 2a1g + 25g + Tig + 4Tlu + 27—2g + 27—2u~ (13)

The next step in the normal coordinate analysis is to find a complete set of
internal coordinates s, and then on the basis of symmetry arguments, we obtain
the symmetry coordinates by using the well known relation: § = Us, where the
U matrix is symmetry determined [5]. Tt is customary in the literature to project
the internal coordinates in the nuclear Cartesian basis set, represented by the X
matrix, so that the following identity holds: § = Us = (UB)X. This identity
relates the set of the symmetry coordinates S to the set of the nuclear Cartesian
coordinates X. The actual details of the calculation can be obtained upon request

from R.A.

Fig. 1. Nuclear equilibrium configuration.

Also, the symmetry coordinates may be split into three set of coordinates,
namely: (a) the framework vibrations (CrCs), (b) the ligand vibrations (CN) and
(¢) the ligand-framework coupling vibrations (Cr—-C-N). To study, on a semiquanti-
tative basis, the role played by this type of vibrations, we have decided to model the
interacting vibrational force field, using several versions. The force fields employed
in this calculation are: modified general valence force field (MGVFF), modified
Urey—Bradley force field (MUBFF) and resonance interaction valence force field
(RIVFF). The details of the normal coordinate analysis can be found in the work
by Acevedo and Diaz [5]. The L-matrices (amplitudes of vibrations) connecting
the symmetry coordinates to the normal coordinates, by means of the relationship
S = L@, depend on the details of the force field employed in the calculation. We
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have then tabulated the odd parity vibrational frequencies, the L-matrix elements,
and the associated potential energy distribution (PED) in Appendix 1.

The normal coordinate analysis was performed assuming an octahedral site
symmetry for the Cr3F ions. The C1—C and C-N bond distances were taken as 1.90
and 1.15 A, respectively [5]. As MGVFF, MUBFF, and RIVFT are concerned, the
symmetrized F matrices are given in Table I, and the calculated force constants in
Table II [5]. The number of internal force constants reported in this paper are as
follows: MGVFF — 17 , MUBFF — 9 and for the RIVFF — 7, respectively. The
calculated internal force constants are as follows: (A) MGVFF: ferc = 1.7966,
férC/CrC = 0.3140, férC/CrC = —0.0131, f(ch/CN = —0.0810, f(ch/CN = —0.0790,
Jon = 17.0490, fs = 0.1451, fgp = 0.0076, fzpr = 0.0202, fcrcjo = 0.0252,
fo = 0.1806, faor = 0.0248, faar = 0.0236, faon = 0.0036, fap = —0.0175,
Japr = —0.0049 and f.p = —0.0092; (B) MUBFF: K;(CrC) = 1.3010,
K5(CN) = 17.001, F = 0.0700, F' = 0.0600, p1(CrCq1/CrCs) = 0.46000,
p2(CrC/CN) = 0.00000, Hi(a) = 0.24500, Ho(B) = 0.11510 and
p3(CCrC/CCrC) = 0.03500; (C) RIVFF: Fore = 1.73100, Scrcycrcy = 0.31750,
Fen = 16.86370, Fp = 0.27910, Pg/5 = 0.03560, T,/ = —0.16190 and
F, = 0.17970. All these values are given in mdyn/A.

From the above results and those reported in Appendix 1, it is shown that
the MGVFF reproduces rather nicely the observed frequencies and the values for
the calculated force constants are reasonable. It is found that the Cr—C stretching
force constant (1.80) is smaller than the value for the Co—C (2.10) as reported by
Jones [4], in the Co(CN)2 ion. This is probably due to the smaller degree of 7
bonding in the Cr(CN)2~ complex ion. The difference in the electronic structure
in the two metals produces an increase in the CN stretching force constant (17.05)
in the Cr(CN)‘Z’_ ion, when it is compared with the corresponding value in the
Co(CN)2™ ion (16.77). A careful and detailed discussion may be found in the work
of Acevedo et al. [5], and therefore we shall not repeat it here.

3.8. Vibronic intensity calculation

It can be shown that the 2E; — %44, transition borrows its intensity mainly
from the Az — “Th; polyelectronic excitation with the explicit cooperation of the
odd parity normal modes of vibrations of the complex ion (within the framework of
both, a molecular model and the independent system model). This latter electronic
transition is made up of three one-electron transitions, namely the zy — 22 — y?
and its cyclic permutations (x — y — z — z). A typical matrix element may be
written as follows [17, 19, 20]:

(doy | DS o y2) = = 56(r* ) aa (24 202 = 2)(841 44 = 641 —a), (14)
where k1 = 4.

It is interesting to observe that for this particular phosphorescence, the rel-
ative vibronic intensity distribution due to the 6 odd parity vibrational modes
depends solely on the details of the intramolecular force field. There is no radial
dependence on these vibronic intensity ratios, since the expectation values of r#
between two d-orbital cancels out when the relative vibronic intensity ratios are
worked out.
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Next, let us define the quantities
dy = —48vV2arr; 7, dy = —48V2ar(ry T+ R7T),

[D
ds = 48 R—(aL + Ba)ry”, dy = 48V2(ap + Bav) [357 + (;_0) r0—7] ,
0 0

d5 = —d3 and d6 = —d4. (151)

Here Ry = Ro(Cr-C), D = D(C-N) and 7o = Ro + D. The parameter values used
in the intensity calculations are as follows: Rg = 1.90 A, D = 1.15 A, 7 = 3.05 A,
ar = 1.21 A% and Ba = 0.6003 A3. Next, when combining Egs. (11), (12.1),
(12.2), (14) and (15.1), it is easy though long and tedious to show that for the
one electronic transition xy — x? — 32, the ligand polarization components to the
total transition dipole moments may be written as given below

p= —’YLP(d156b + d2.S7p + d3Ssy + daSep + d5S12p + d6S13p),
W= —’YLP(—d156c — d3S7. — d3Ss. — d4S9. + d5S12. + dsS13.),

=0, (15.2.1)

where vIF = f—ge<r4>dd and the set of symmetry coordinates utilized are those
listed in Appendix 3. Next, we shall introduce the 3£ quantities, after using the
transformation matrix S = L@, thus relating the set of the symmetry coordinates
to the set of the normal coordinates for the system.

Thus we define

EP = dy Leg + doLze + d3Lss + dalos,

LP — dyLe7 + daL77 + d3Ls7 + da Loz,

P — dyLes + doLrs + dsLss + daLos,

EP = dyLeo + doLizg + d3Lgo + dyLog,
BEF = d5L1s 19+ dsLis 13,

BEf = d5L1s 13+ dsL13 13 (15.2.2)

Thus, for the xy — 2 — 32, one electron transition, the z,y, and z component of
the ligand polarization transition dipole moment become

p" = =y (BE Qoy + BEY Qro + BET Qs + 85T Qos + A1 Q12
+814 Qus),

p = =y (=BEP Qs — BEF Qe — BEF Qse — 5T Qoe + A1 Quae
+814 Quse),

@ =0. (15.2.3)
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In terms of the above defined magnitudes, the total ligand polarization dipole
strength associated with the %45, — T, polyelectronic transition may be written
in a closed form as given below

D(*Azg — Tog) = 6(+"")7 Y (BE7)*(01Qx[1)*. (16)
E=6-13
It 1s indeed clear that in this order of approximation, the relative vibronic

intensity distribution associated with the two excitations, namely the Ey — %45,
and the intensity source, As; — 75, will be roughly equivalent. This is partic-
ularly true since the spin—-orbit coupling constant for this complex ion is small,
though other than zero. Furthermore, it follows that the relative vibronic intensity
distribution of the 4A2g — 4ng electronic transition is independent of any radial
integral, but is critically dependent upon both the details of the intramolecular
force field and the values of the mean and anisotropic ligand polarizability values.
We list in Appendix 2 the assignments currently accepted for each and all the nor-
mal modes of vibrations for the Cr(CN)z3 complex ion in the assumed octahedral
point molecular group. We also display in Table I the relative vibronic intensity
distribution for the sixodd parity vibrational modes and also for the three differ-
ent force fields employed to model the interacting vibrational force field for this
system.

TABLE 1

Calculated relative vibronic intensity distributions (the
experimental ratios are not available).

Force field | f(vs):f(v7):f(vs): f(ve) :f(v12): f(v13)
MGVFF 1.00:1.19:19.58: 7.58 :14.69: b5.58
RIVFF 7.39:1.00 :67.07:258.85:66.06 : 201.78
MUBFF 1.00:9.98 :8.34: 5.27 :15.32: 2.79

TABLE 11
Dipole strengths for the 4A2g — 4TQg transition™.
Oxidation state MGVFF RIVFF MUBFF
+3 2.413 x 1073 3.918 x 1073 2.076 x 1073
+2 6.466 x 1073 | 10.499 x 1073 5.564 x 1073
+1 23.024 x 1073 | 37.369 x 1073 | 19.802 x 1073

*The radial wave functions have been taken from Kibler et al. [21].

We also list in Table 11, below the ligand polarization contribution to the
total oscillator strength corresponding to the 4A2g — 4ng transition for a set
of three different central metal ion’s oxidation states. This 1s important, since
according to the Gauss theorem, the net charge should be concentrated on the
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surface of the sphere, and therefore we should expect that an effective charge on
the central metal chromium approaches to zero.

It is important to observe that no correction for the refractive index of the
medium has been included in the vibronic intensity calculation. Also, the L-matrix
corresponding to the various force fields are given in Appendix 4, as well as the
calculated potential energy distribution (PED).

4. Discussion

The experimental data referred to the E; — 45, electronic transition
indicates that the intensity induced by the normal modes vg[r, : 8(Cr—-C-N)],
vo[T1u : 8(C-Cr-C)], via[mau : 6(Cr—-C-N)], v13[m2u : 6(C-Cr-C)] should be roughly
comparable [1-3]. This experimental finding is reflected by our calculation and
as seen from the results given in Table I, the three different force field employed
in the calculation give the right pattern for the vibronic intensity distribution
(the poorest agreement is achieved by the RIVFF). These results indicate a clear
support to our model calculation and are in fairly good agreement with experiment
[1-3]. Tt is also important to analyze the results displayed in Appendix 1, Sec. III.
It is shown that for the normal modes associated with the odd parity vibrational
frequencies v; (¢ = 8,9,12,13), there is a nonzero coupling among the stretching,
bending, and linear bending vibrations and therefore this mixing of the symmetry
coordinates should be considered when dealing with the assignments for these
types or compounds. We have investigated this mixing of symmetry coordinates,
using three different force fields and we can claim that the calculation has been
successful, though many limitations and complexity were involved.

There is no doubt that we have proved the importance of the skeletal, the lig-
and and the framework-ligand vibrations of odd parity in the intensity mechanism
associated with this parity forbidden but vibronically allowed electronic transition.
There are however several ways of improving the calculation: the obvious one is
to take into account the descent of symmetry and also to undertake a full lattice
dynamic calculation. All of these improvements are most welcome, however we
need fairly accurate data base for these systems.
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Vibrational frequencies, L-matrix elements, and PED values.
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Appendix 1

(1)} Vibrational frequencies

Observed | MGVFF | RIVFF | MUBFF
Ve 2.139 2.139 2.135 2.133
124 467 467 467 480
Vs 341 341 347 346
Vo 150 150 143 142
V12 355 355 347 355
Vi3 95 95 103 95
(1I) L-matriz elements
(A) MGVFF
aig
CrC —0.218 | 0.189
CN 0.393 | 0.013
g
CrC —0.218 | 0.189
CN 0.393 | 0.013
Tig
CrC 0.688
Tiu
CN 0.393 | 0.012 0.006 0.001
CrC —0.221 | 0.248 0.106 0.016
CrCN | —0.004 | 0.405 | —-0.577 0.152
CCrC | —0.008 | 0.444 | -0.303 | -0.177
Tog
CrCN 0.668 | —0.165
CCrC 0.555 | 0.160
T2u
CrCN 0.676 | —0.126
CCrC 0.385 | 0.136
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(B) RIVFF
g
CrC -0.218 | 0.189
CN 0.393 | 0.013
g
CrC -0.217 | 0.190
CN 0.393 | 0.010
Tlg
CrC 0.688
Tin
CN 0.393 | 0.015 | 0.000 0.001
CrC -0.222 | 0.268 | 0.005 0.021
CrCN | —0.006 | 0.157 | 0.669 | —0.217
CCrC | -0.010 | 0.302 | 0.297 | —0.376
T2g
CrCN 0.687 | —0.022
CCrC 0.509 | 0.272
T2u
CrCN 0.668 | 0.165
CCrC 0.294 | 0.283
(C) MUBFF
ng
CrC -0.218 | 0.189
CN 0.393 | 0.013
g
CrC -0.218 | 0.189
CN 0.393 | 0.012
Tlg
CrC 0.688
Tin
CN 0.393 | 0.003 0.008 0.001
CrC -0.218 | 0.136 0.236 0.005
CrCN 0.000 | 0.665 | —0.207 0.186
CCrC | —0.004 | 0.543 0.014 | -0.161
T2g
CrCN 0.642 | -0.248
CCrC 0.570 | 0.089
T2u
CrCN 0.662 | —0.187
CCrC 0.396 | 0.100
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(1I1) PED values (note that the values have not been renormalised to unity)

229

aig
v=2139 cm™! (MGVFF) | 4v(CxC) 4 97v(CN)
v =2142 cm™* (RIVFF) | 4r(C1C) + 96v(CN)
v =2150 cm™* (MUBFF) | 4v(C1C) + 96v(CN)
v =360 cm™?! (MGVFF) | 96»(CxC) + 3v(CN)
v =360 cm™?! (RIVFF) 96y (CrC) 4+ 4v(CN)
v =358 cm™! (MUBFF) | 96»(CzC) 4 4v(CN)
g
v =2170 cm™! (MGVFF) | 3v(C:C) 4 97v(CN)
v=2135 cm™! (RIVFF) 3v(CrC) 4+ 97y (CN)
v =2150 cm™* (MUBFF) | 4v(C1C) + 96v(CN)
v =367 cm™! (MGVFF) | 97v(CxC) 4 3v(CN)
v =2325 cm™! (RIVFF) 97y (CrC) 4 3v(CN)
v =356 cm™! (MUBFF) | 96»(CzC) 4 4v(CN)
Tig
vy =394 cm™! (MGVFF) | 1006(CrCN)
vy=371cm™! (RIVFF) | 1006(CrCN)
v =346 cm™! (MUBFF) | 1006(CrCN)
T1u Symmetry species
v=2139 cm™! (MGVFF) 2v(CrC) 4+ 97y (CN)
v=2135 cm™! (RIVFF) 3v(CrC) 4+ 97y (CN)
v=2133 cm™! (MUBFF) 2v(CrC) 4+ 97y (CN)
v =467 cm™! (MGVFF) 67v(CrC) + 106(CrCN) + 216(CCrC)
v =467 cm™! (RIVFF) 3v(CN) 4+ 91v(CrC) — 26(CrCN) + 96(CCrC)
v =480 cm™! (MUBFF) 8y (CrC) 4 478(CrCN) + 456(CCrC)
v=2341 cm™! (MGVFF) 27p(CrC) + 548(CrCN) + 176(CCrC)
v =347 cm™"  (RIVFF) 1346(CrON) — 345(CCrC)
v =346 cm™! (MUBFF) 2v(CN) + 89r(CrC) 4+ 96(CrCN)
v =150 cm™?! (MGVFF) 4p(CrC) 4 346(CrCN) 4 616(CCrC)
v =143 cm™! (RIVFF) 6v(CrC) — 318(CrCN) + 1256(CCrC)
vy =142 cm™"  (MUBFF) 438(CrCN) + 556(CCrC)
Tog
» =358 cm—' (MGVFF) | 546(CrON) 4 476(CCrC)
v =406 cm™"  (RIVFF) | 948(CrCN) — 58(CCrC)
v =440 cm™"  (MUBFF) | 2906(CrON) 4 716(CCrC)
v =117 cm™"  (MGVFF) | 465(CrON) 4 535(CCrC)
» =183 cm™" (RIVFF) | 56(CrCN) 4 948(CCrC)
» =108 cm™" (MUBFF) | T16(CrON) 4 295(CCrC)
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T2u
v =355 cm™ (MGVFF) | 658(CrCN) + 336(CCrC)
v =347 cm™ (RIVFF) | 1348(CrCN) — 348(CCrC)
v =355 cm™ (MUBFF) | 478(CrCN) + 526(CCrC)
(
(
(

U (MGVFF) | 348(CrCN) 4 668(CCrC)
RIVFF) | —348(CrCN) + 1346(CCrC)
MUBFF) | 528(CrCN) + 476(CCrC)

v =95 cm™

v =103 cm™?!

1

v =95 cm™

Appendix 2

Modes of vibrations for the thirteen-atom systems.

aig |1 | v(CrC)
vy | ¥(CN)
gg | vz | v(CrC)
vy | v(CN)
Tig | vs | 6(CrCN)
Tu | vs | ¥(CN)
vy | v(CrC)
vs | §(CrCN)
vy | 8§(CCrC)
Tag | V10 | 6(CrCN)
vi1 | §(CCrC)
Tou | 12 | 6(CrCN)
vz | §(CCrC)
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