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We study theoretically TM-polarized electromagnetic waves at a plane
interface between two nonabsorbing, optically defocusing, nonlinear Kerr-
-type media. Numerical results are obtained for the dispersion equation and
propagation constants of the field modes. The power guided by TM waves
on interface was calculated and illustrated as a function of electric field value
on interface.

PACS numbers: 42.65.—-k

1. Introduction

The analysis of nonlinear TM guided waves is complicated by the inherent
structure of the fields that contain two electric field components Ey(x) and E, ()
which are 7/2 out of phase with one another [1]. This is why classical surface waves
of the TM type on the nonlinear interface were only analysed by approximate
methods using various assumptions [1-8].

In the paper [9] an analysis of electromagnetic boundary problem for TE
field on a plane interface of two nonlinear media was presented. It was shown
that apart from a surface wave, known from the literature, the boundary problem
allows also for existence of the waves of other types. Nonlinear interface can guide
also electromagnetic wave with the amplitude decaying in one region (z > 0) and
oscillating in the second region (z < 0), which is non specific for classical surface
wave. It is a new kind of wave and a question is if such wave with TM polarization
can exist and be guided on the interface. In this work we shall try to find an answer
for that question.

(101)
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2. Geometry of the investigated problem

Two nonlinear media of the Kerr type (# > 0 and # < 0) divided by a
plane interface and described with the following tensor of dielectric permittivity
are considered:

) j€11 0 0
g=10 & o0 |, (1)
0 0 j€33
where
jgll = j€22 = j(f, (2)
j€33 = j€1 + Oz]|E22]| (3)

The index j is the index of a medium and takes on the values j = 1, 2.

Nonlinearity of the Kerr type is enclosed in the component £33 of the tensor
describing a medium. Values %, J; characterise linear permittivities and «; is
a coefficient of nonlinearity of a medium. Therefore, the medium 1 (# > 0) is
described by the parameters ¢, %1, ay, the medium 2 (z < 0) is described by the
parameters %, %1, as, and E, is the longitude component of the electromagnetic
field. The geometry of the problem is illustrated in Fig. 1.
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Fig. 1. Geometry of considered problem for TM waves.

3. Maxwell equations for considered regions

Maxwell equations describing TM field in media 1 and 2 take on the general
form

0H .
6;/ = 1(.d€0€11Ex, (4)
H .
66—;/ = —1w€0€33Ez, (5)
0F, 0L, .
et A H
0z Ox 1WHo iy, (6)
where £g and pg — the permittivity and permeability of free space, respectively.

TM field is completely described by three components F,, E., and H,.
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4. Wave equation for TM field in considered region

We assume that the considered electromagnetic field is slowly variable and
it does not depend on coordinate y. In such a case the component F.;(z, z,t) can
take on the form

E.i(z,2,t) = E,;(x)exp [i(kohz — wt)], (7)
where & is propagation constant of a mode, ky 1s the free space wave number.
The other components of the field, £,, Hy, are defined univocally by the Maxwell

equations (4)—(6). Using (2), (3), and (7) and transforming Maxwell equations, we
obtain the wave equation for amplitude E.;(z) in j region

d?E;, k% .

dl,zj - ﬁ (Je1 + ;| Ej)*) Ej = 0, (8)
where

Ej = Ezj($)a (9)

ki = ko(R? — Jg)t/2. (10)

5. Solution of wave equation

The first integral of wave equation (8) takes on the form
dE; ’ ka o2 Yo
(@) - (mEegE) = (11)

Properties and the form of the last solution are determined by the values k]Z, aj,
and Cj. In the case when ka > 0, a; > 0 (focusing medium), C; > 0, then a
solution of wave equation (8) is expressed by the Jacobi cs function

Ej(@) = Qjes[oj (2 — xo5)|my], (12)
where
es(u|m) = en(ulm)/sn(ulm), (13)
1/2
205
= a; — (af —4b;Cy)H2 |7 (14)

1/2
a; + (a]2 — 4[)]'0]')1/2

2

O']'I

2(a? — 4b;Cj)H/?
[aj + (a — 4b;C;)H/2]
The parameters a; and b; are expressed by the formulas

k7 e
aj = ~—, (17)
J

m]'I
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2
O[]k]

I 26]"

(18)
and g; is an integral constant of Eq. (11).

From the form of the solution of Eq. (12), it could be seen that the electric
field can have, in this case, a singularity in the point x = zo; and such solution
has to be rejected form the physical point of view.

In the case when ka > 0, a; < 0 (defocusing medium), C; > 0, then the

solution of wave equation is expressed by the Jacobi cosine

Ej(x) = éjen [y (x — xoj )|my] (19)
where
4 (a2 + 4]y
S5 — a]—l—(a]—i— 16;1C5) (20)
! 2|0, ’
v = (af + 4]b;|C;)M*, (21)
_aj +(af + 4]k |C5)'? (22)

m; = ,
I 2(a]2»—|—4|b]'|0j)1/2
and the expressions a; and b; are given further by (17) and (18), respectively. Jacobi

function cn(u|m) has a period 4K (M), where K(m;) = 077/2(1 —m; sin?6)~1/2dg
is the elliptic integral of the first type. From (19) one can calculate that E;(z)
has its maxima in points z,; = xzo; + nl;, n = 0,1,2,... where the distances
between maxima are [; = 2K(m;)/~;. Hence the electric field described by the
expression (19) is periodical function of «.

In the case when Cj = 0, then m; = 1 and we have cn(u|l) = (chu)~!. We
obtain then the no periodical and vanishing solution of the wave equation (8) in
the form

By = () tehlosto - o) (23)
The electric field described by the solutions (19) or (23) does not have the sin-
gularity and these solutions can be used while defining a boundary problem on
interface.

6. Idea of boundary problem on nonlinear interface for TM field

The above considerations of the solutions of nonlinear wave equation (8)
showed that for defining the boundary problem for TM field on interface, we
could use only nonsingular solution (19)—(23). This means that electromagnetic
boundary problem for TM field in lossless nonlinear media is physically possible
only if both media are of the defocusing type, i.e. when a3 < 0, as < 0.

Pure surface modes, which are not periodical and not vanishing for z > 0
and « < 0, are well known solution of a boundary problem [1-8]. Seeking for new
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solutions of the problem, we want to show the existence of such TM field modes,
which are oscillating and periodical in one medium, vanishing in a second medium
and fulfil the boundary condition on interface and in infinity.

While assuming a vanishing character of amplitude of a field in region 1
and its oscillating character in region 2, we also presume certain form for integral
constants of Eq. (11), according to our previous considerations, namely

Cy =0 for z>0, (24)

Cy>0 for z<0. (25)

Then the solutions of nonlinear equation (8) take on the form (23) and (19).
Region 1, « > 0 and a; < 0

B = (%) {chlay(z — zo1)]} . (26)

Region 2, « < 0 and as < 0
Fa(x) = bacn [y2(x — xg2)|ma] , (27)

where ay, by, 82, 72, ma are given by the expressions (17), (18), (20), (21),
and (22), respectively and #g; and g2 are the new integral constants and factors
defining maxima of the functions (26) and (27).

7. Conditions of continuity and integral constant C5

The boundary conditions for TM interface require the continuity of compo-
nents £, and H, for z =0

E1(0) = E3(0), (28)

H1(0) = H»(0), (29)
where E; = E,;, H; = Hy;. From Maxwell equations (4) and (6) we have

i(.dEo jE dEj (l‘)

The relation (29) could be written in a form
e_jdEl(x) _ e_szz(x) (31)
k’% dl‘ =0 k’% dl‘ x:O.

Using the explicit forms of components E1(x) and Fs(z), the condition (31) and
Eq. (11) allow for defining an integral constant Cs

k2 |2 1 /[ k2
CZ:%[(%/C% 161—262) Eg+§<2€k§041—042) Eg:|a (32)

where FEy is the value of electric field on interface z = 0.
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8. Dispersion equation and its discussion

The conditions of continuity (28) and (29) of components of the field on
interface x = 0 give us the following relations:

ay

6Mﬁm=(m0wwmhm”, (33)

e 2 2 a?/z

S (s o) = 1 o
Replacing (33) with (34) we obtain the dispersion equation, which determines the
TM field modes on interface

%alkgth(al zo1)en(yazos) = %k%sn(’yzxoz)dn('yzxoz). (35)

The last equation can be easily reduced on explicit form of an equation, determining
the propagation constants h of these modes. Assuming a certain value of the electric
field Fy on the interface, we have

th(alzo) [ch(ateo)] ™" (34)

ay

1/2
EO = (E) [Ch(all‘ol)]_l ; (36)
and
Eo = 62CH(’72$02|m2). (37)

Using the last relations, the dispersion equation (35) could be transformed into
the form, in which the value of Ey field and the coefficients of nonlinearity «;
and «s exist in various powers. As the coefficients of nonlinearity «; and aq are
of the order of 1072 m?/V?2 so the expressions containing a1 and as in the
powers n > 2 cannot be avoided because of their infinitesimal contribution. Easy
transformations lead us then towards the dispersion equation with its form

(h2 — 26) (226 + %Ozl) + Ozz(hz — 16) =0. (38)

The roots of the last equations are easy to determine and they have the form

2e% +2
h:i¢wz\/€2. (39)

280+ Son +an

A propagation constant h, as one can see, is determined by the parameters of a
boundary media and does not depend on the value of Ey field on interface. This
means that in considered structure, where the parameters of media are given, we
can guide only one mode of TM electric field with the propagation constant (39).

9. Power guided by TM field on the interface

The power flux in optional region is determined by the average value of the
Poynting vector, which is given for TM field in considered structure as

(S) = %Re (i 1) + ML 1) (40)
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Using Maxwell equations for TM field (4)-(6), a component of the flux on the
interface in j region could be expressed in the form
wWep jE]Coh 6Ez 6E;
(S): = Re
2 k# Oz Ox
and the power guided in that direction is defined by integration of the last expres-
sion.

, (41)

9.1. Power guided in region 1 (z > 0)

Using (41) and (26) we obtain

1 00 x 1
we ekoh OF, OF* we ekoh 3
P = dz = 1+ th 42
! 2k} o Oz Ox v 6kiby [ (arzo)] (42)

where k1, a1, by are determined by the relations (10), (17), and (18), respectively.
The dependence of power P, on the value of electric field Ey strength on the
interface is illustrated in Fig. 2.
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Fig. 2. Power guided on the interface in region 1 as a function of £y field.

9.2. Power guided in region 2 (z < 0)

According to (4) and (27) the power guided in this region can be expressed
in the form

Py =

we? ekoh /0 OF, OE*

~d
2k3 or or

wed ekoh | _, ~
= W {m2 [—Elam(0), ma] + Elam(2K (m2)), ma]]

—miy, €Y __sn? [y2(2 — 202)] dx}, (43)
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where £ and K are the respective elliptic integrals. The power P, can be further

analysed numerically in an easy way. The dependence of power P on the value of
electric field Ey strength on the interface is illustrated in Fig. 3. Calculations of
the powers P, and P> were made for the case when a medium 1 is characterised
by the coefficients: ey = 1.55, a3 = 6.37 x 107" m?/V? and a medium 2 by
coefficients: %5 = 1.83, oy = 8.88 x 1071Y m2?/V?2 [4, 5]. The wave of the TM
mode is of the length A = 0.633 pm.
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Fig. 3. Power guided on the interface in region 2 as a function of Ey field.

a)

10. Discussion of obtained results

Electromagnetic field with polarisation TM and variable amplitude perpen-
dicular to interface can be excited on nonlinear interface between two non-
linear media of the Kerr type, which are described by uniaxial tensor (1) and
in approximation (2), (3).

It means that for # > 0 amplitude quickly decays in the direction perpen-
dicular to interface, and for # < 0 amplitude oscillates with a certain period
of oscillation.

The wave can be however excited only in the case when both adjacent me-
dia are characterised by negative nonlinear coefficients a; < 0 (defocusing
media).

For the chosen nonlinear approximation (2), (3) the constants of propagation
of TM field on interface are only weakly dependent on the value of guided
power and thus we assume that no such dependence exists.

A real part of Poynting vector, perpendicular to interface is equal to zero.
In spite of the amplitude oscillation the wave does not propagate in that
direction. Only oscillation of the power proceeds. The half of the period of
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the Poynting vector is directed towards positive values of z, the second half
is directed towards the negative values. The time average value of oscillation
of the Poynting vector perpendicular to interface is equal to zero.

Such energetic behaviour is characteristic of surface waves. Typical surface
wave has however the amplitude vanishing on the both sides of interface.

TM wave described in that paper can be called the wave of the surface type
or quasi-surface wave because of the amplitude behaviour which is different
than that of the typical surface wave.

A wave with similar characteristics appears in complete internal reflection
on the nonlinear interfaces.

TM wave guided on nonlinear interface, being discussed in that paper, is a
new kind of wave, excited on that interface.
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