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In this work a new type of solution for TE field on a plane interface
of two nonabsorbing, optically self-focusing, nonlinear Kerr-type media has
been presented. Numerical results are obtained for the dispersion equation
and propagation constants of the field modes. The power guided by TE waves
in the nonlinear interface was found and graphically illustrated.
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1. Introduction

The electromagnetic field propagating at a boundary between different me-
dia exhibits a number of interesting properties which are the subject of several
experimental and theoretical investigations.

In the case of linear media this field can be represented generally by different
types of waves such as the lateral, surface or leaky ones [1-5].

In the nonlinear case papers of many authors have directed attention on
a possibility of existence of the nonlinear surface waves. The earliest theoretical
study of the TE polarized surface waves was carried out by Litvak and Mironov [6].
Recent studies [7-16] give actually a complete theory, determining properties and
conditions of existence of the nonlinear surface waves. The modes are interesting
because, as it is known, the TE polarized surface waves cannot exit on the planar
interface between two linear dielectric media.

The problem of the existence of other than the nonlinear surface waves at
the boundary between two nonlinear media has not yet, however, been satisfac-
torily investigated. On the basis of Kaplan’s papers [7, 8] we know that when an
electromagnetic plane wave is transmitted through a nonlinear interface, in some
special cases inhomogeneous nonlinear waves perpendicular to the interface with
a variable amplitude can be excited. Hence, the surface wave is not the only so-
lution of the electromagnetic boundary problem as in the case of linear/nonlinear
interface.

(87)
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The main purpose and the topic of this paper is to prove that the electro-
magnetic boundary problem in a nonlinear interface is more complicated than it
is presented in the existing literature on this subject. The nonlinear interface can
guide also the electromagnetic waves other than the surface waves with vanishing
amplitude on both sides of the interface.

2. The formulation of the problem

Two semi-infinite regions, z > 0 and z < 0, separated by a plane interface

z = 0 will be considered, respectively. Each of the regions contains a uniaxial
nonlinear medium of the Kerr type described by a dielectric tensor J£(j = 1,2)
j€11 0 0
jEAI 0 j€22 0 . (1)
0 0 j€33

The geometry of the problem is shown in Fig. 1. We consider the stationary non-
linear TE waves propagating in the z direction with z-dependence in the standard
form [7-16]

IEy (%, z,t) = IE(x) exp [i(kohz — wit)] + c.c., (2)
where kg is the free space wave number, A i1s the mode index and w is the angular
frequency.

Medium 1

z

0 >
Propagation axis

Medium 2

Fig. 1. Geometry of considered problem.

From Maxwell’s equations, for TE guided waves travelling down the z axis,
the basic equations are

koh'E(x) = —wpo H,(2), (3)
D) iwpoit (2, ()
diH.(z) . i

7dz = WWE&Q €22 E(l‘), (5)

where ¢g and pg are the permittivity and the permeability of free space, respec-
tively. Eliminating JH,(x) and 7H,(x) from the set of Eqs. (3-5) one obtains the
wave equation for j-th region
d?iE
dz?

— ]Cg(hz — jEzz)jE = 0, (6)
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where JE = JE, (). Assuming the Kerr law nonlinearity, in which the 45 is given

by

Jeoy = Je1 + ij|jE|2, (7)
we have
d2IiF . X .
T R o) B 4 Ko | BB = 0. (8)
T

In the latter expressions Jz; denotes the linear permittivity, o is the nonlinear
coefficient of z > 0 (Ye1, 1) and x < 0 (%21, a2) regions, respectively.

For a self-focussing medium, «; > 0, and the first integration of Eq. (8)
yields

LN 2
(L) - i [0 - pim+ S| = ¢ )
dz 2

where C} is an integration constant.

In the previous studies referred to in this introduction, the electromagnetic
field problem at a nonlinear interface is reduced only to the surface modes, which do
not carry any energy along the xz-axis. For this reason C; then must be set equal to
zero constant for both sides of the semi-infinite nonlinear media (Cy = 0,C5 = 0).

This paper focuses on investigation of solutions other than the surface waves.
Our strategy assumes that in both half-spaces of the nonlinear interface there can
also exist modes for which C; # 0 on one or both sides of the interface. Such
prediction can be made on the basis of analysis of the phenomenon in the linear
case, where apart from the surface modes other waves appear (leaky waves and
lateral waves).

In the presently investigated problem we seek such solutions that would be
oscillating and periodic in the region < 0 and vanishing in the region z > 0,
therefore we put Cs > 0, for x < 0 and 7 = 0, for > 0. In the theory of
propagation of the electromagnetic field in a semi-infinite medium, the conditions
at infinity must be defined. Since there are no sources inside the half-spaces z > 0
and z < 0, the following conditions have to be satisfied:

E(x) =0 for z— +oo, (10)

E(z) — const =F(z) >0 for x — —o0, (11)

which are, essentially, the Sommerfeld radiation conditions (the absence of the
backward-travelling wave).

3. The solution of the equations
3.1. The region 1, x >0, a1 >0

According to the assumptions made in ch. 2, C; = 0, and the first integral
of Eq. (8) is

1\ 2 2
(—ddE) — k@(/ﬂ — 1) 157 + —k02a1 gt = 0. (12)
T
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This equation has an exact solution

'E = pi{chlgiko(z — zo1)]} 7, (13)
where

p1 = [2(h* = Yey)/an]'/?, (14)

g1 = (h* = )12, (15)

zp1 18 the location of the maximum of the electrical field strength.
3.2. The region 2, x <0, as >0

The first integral of Eq. (8) is presently given by
4?5\ k3
S} — kAR - %)+ B2t = o, (16)
dz 2
where C's > 0 is an integration constant.
Then the general solution of Eq. (16) can be expressed as

“E(x) = p2enfgako(z — z02)/m], (17)

where cn is a specific Jacobi elliptic function, zp2 is a second integration constant.
Parameters ps, g2, and the modulus m are given by

h2 — 261 —|— [(h2 — 261)2 —|— 20[202/]6’8] 1/2

P = o : (18)
63 = [(h? = %1)” + 20005 /k3) 2, (19)
2
Qapy
= . 2
2¢3 (20)

4. The continuity conditions and the integration constant

The boundary conditions at the interface # = 0 require the continuity of the
tangential components of E(x) and H,(x). Therefore we have, respectively

1 (0) = 2E(0), (21)
dE(x) d2E(x)
= . 22
dz le=0 dz le=0 (22)
Using Eqs. (12), (16), and (22) one can find easily the Cy constant
Cz = k(%1 — 'e1) EF + (k§/2)(a1 — a2) Ep, (23)

where FEy is the value of the electric field at the interface z = 0.
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5. The dispersion equation

The continuity conditions (21) and (22) for the tangential component give
the relations

pilch(kogqraor)]™" = paen(kogaon), (24)
and

prqith(koqizor)[ch(koqizo1)] ™" = pagasn(kogazos)dn(kogazos). (25)
Equations (24) and (25) yield the general dispersion equation

qrth(koqrzor)en(kogazor) = gasn(kogazor)dn(kogazoz). (26)
Because the electric field on the interface plane at = 0 is now given by

Eo = prch™ (q1kowor), (27)

Ey = paen(gq2kozoz), (28)
where it follows that the dispersion equation (26) can be written in the form

szh(P% - Eg) = P1Q2(P§ - ES)[Pg - mz(Pg - Eg)]1/2~ (29)

After some simple transformations the last equation assumes an elementary form
of the algebraic equation for the mode index h

2(h? — %1)?(A? — B*) + 4(h* — %1)BC + C(A? - 2C) = 0, (30)
where

A= 2( 261 — 161) + (50[1 — 40[2)E§, (31)

B= 2( 261 - 161) + (Oél - 20[2)E§, (32)

C= 20[2[2(261 — 161)Eg + (Oél — Ozz)Eg] (33)

6. Analysis of the dispersion equation

The dispersion equation is easily to solve, and we find

P {251 _ 2BC F \/242C[2C — (42 - B?)] }1/2. (34)

2(A2 — B?)

Equation (34) determines the propagation constants h(w) representing the waves
propagating along the nonlinear interface. As seen with (34), (31-33), the values
depend on the guided wave power by interface. It is interesting to note that the
values (34) can be real or complex. Two kinds of wave modes can exist for this
reason. The configuration considered here is ideally lossless. From the literature
it is known that in such a case the real values & must correspond to the guided
surface waves, the complex values h correspond to the guided leaky waves.

When

2A2C[2C — (A* — B*)] < 0 (35)
the roots of the dispersion equation become complex otherwise they become real
or imaginary.
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6.1. Complex roots

The simple consideration demonstrates that the inequality (35) is satisfied if

a)
C>0, (36)
20 — (A2 — Bz) <0, (37)
261 > 161, Qg > &%, (38)
2( 261 — 161) 2 2( 261 161)
g — (X1 - EO - 20[2 - 30[1 ’ (39)
or b)
C>0, (40)
20 — (A% — B?) <0, (41)
161 > 261, o] > g, (42)
5 2(%1 = %)
EO > ay — as 3 (43)
and c¢)
C<0, (44)
2C — (A? — B?) > 0, (45)
161 > 261, oy > 25))&, (46)
o 2(%1 = %)
Ef < 301~ 20, (47)

0.2. Real roots

The condition of the real roots of the dispersion equation existence results
from the inequality

C[2C — (A% — BH))] > 0. (48)
It is easy to prove that such roots will exist in the case when the below conditions
are satisfied:

a)
C >0, (49)
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20 — (A2 — BZ) > 0, (50)
30[2
>, >, (51)
2% — k)
2
EO < 20[1 — 30[2 ’ (52)
and b)
C<0, (53)
2C — (A? — B?) <0, (54)
261 > 161, oy > o, (55)
2% — k)
2
E; < ey —ar (56)
or ¢)
C<0, (57)
20 — (A2 — BZ) <0, (58)
161 > 261, o] > g, (59)
1. _ 2 1o
=) o 20— =) (60)
a1 — Ay 30[1 - 20[2

As one can say, the solutions of the dispersion equation are always comprised in
three intervals but in a special way:

— if 151 — %1 > 0 and a; — as > 0, two intervals of complex solutions and one
interval of real solution exist;

— if ¥y — %, < 0 and a; — a2 < 0, two intervals of real solutions and one
interval of complex solutions exist.

These conclusions are illustrated in Figs. 2 and 3.

Presuming that the first medium (z > 0) is liquid crystal MBBA whose
refractive index has its linear and nonlinear parts of the values [13] of ng; = 1.55
and ns; = 1072 m2/W, and the second medium (z < 0) is crystal YAG with the
adequate values of the refractive index [13] as ngz = 1.83 and nss = 3x 107 m?/W,
four real solutions of the dispersion equation are obtained, appropriately: h =
+1.71 and h = 4:2.72. These values were obtained for Fy = 10° V/m.
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)
C>0
20 —(4*-BH)<0
2(g—"e)
a4 -
Real . C <0
Solutions 20 — (4" - B <0
2e—5) . ,
3a;, —-2a,

o
20 (4> —B?)>0

Fig. 2. The solutions of the dispersion equation when Ter — % > 0, a1 —ap > 0.

Ey?

C>0
20 —(4*-BY) <0

2As-"s)
oG-
C <0
2¢ 7(AZ 7Bz) <0
2Ag-"e)
3a;, —-2a, C <0

20 (4’ =B >0

Fig. 3. The solution of the dispersion equation when %1 — %1 > 0, a2 — aq > 0.
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Fig. 4. Propagation constant h dependence on the strength of electric field Fo on the

interface.
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The dependence of the propagation constant h from the value of electrical
field Ey on the nonlinear interface for the above configuration is illustrated in
Fig. 4.

Assuming that the propagation constant is of calculated value h = 1.71,
it is possible to make a graphical illustration of the electrical field profile at the
nonlinear interface, adequate to the solution of this boundary problem. The profile
is presented in Fig. 5.

°1 Re[E,]
1x10° V/m

-2 T T T T T
-10 -5 0 [ 10

Fig. 5. Profile of TE electric field on the nonlinear interface.

The electrical TE field of the wave guided by the nonlinear interface has
its maximum in the region of > 0. In the region of + < 0 the wave amplitude
oscillates between positive and negative values which results in the average value
equal to zero in the period of oscillations.

7. The power in regions and the entire power

The power flow for a harmonic field is described by the Poynting vector
1
(8) = §Re[E x H']. (61)
For the TE field £y, H,, and H, we have
1 : * *
() = gRe[i(Ey H7) — k(E, H7)]. (62)
Hence, the power flow P transported by the waves in the z direction 1s

+ oo
P:/ k(S)dex = P+ P> =

— 00

koh
2w g

| im@ra s 2 [P (63)

The entire power is the sum of the powers P; and Ps from the regions 1 and 2.

W o
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Fig. 6. Guided power dependence on the propagation constant; 1 — power in the
region 1, 2 — power in the region 2, 3 — total power.

The power guided in the regions 1 and 2 as well as the entire power depending
on the propagation constant h are illustrated in Fig. 6.

The illustrations 5 and 6 shows that the nonlinear interface can guide TE
waves with specific and new characteristics. These waves, while propagating along
the interface in the direction perpendicular to the interface, are of variable am-
plitude which vanishes in the region 1 and periodically oscillates in the region 2.
These waves can be guided for some propagation constants h and over the certain
threshold of power. One can also see that the distinct minimum of power exists, for
which the mode of the field can be guided. Moreover, two propagation constants h
(upper and lower) exist, by which the guided modes are cut.

8. Flow of power guided in the direction perpendicular to the interface

For a better characterisation of the wave described in the previous para-
graphs, the flow of power and the power guided by such wave in the direction
perpendicular to the interface should be calculated.

For this purpose the more general form of TE wave is considered, taking
into account also its dependence upon the coordinate x, i.e. the field with the
component Ey(z, z,1)

Ey(x,z,t) = E(x)exp [i(kohz + ¢(z) — wt)]. (64)

The average flow of power in the direction perpendicular to the interface is defined
by the component of the expression (62) and given as

1 *
(S)e = SRe[Ey(x, 2)HI(x, 2)]. (65)
Using (64) and (4) it is easy to prove that this component is of the shape
I dé(z)
Sy = ——|F 2 66
(51, = B (o) P15 (66)
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The field TE on the nonlinear interface, investigated in this paper, is described by
the expression (2), for which

do(z) _

o 0. (67)
The above expression indicates that the average flow of power in the direction per-
pendicular to the interface, which is created by the analysed wave on the interface,
is equal to zero

(8); = 0. (68)
Such behaviour is specific for surface waves. The standard surface waves on the
interface were investigated by many researchers [10-14]. The characteristics of such
waves are perfectly known. Apart from the characteristic that the flow of power
guided in the direction perpendicular to the interface is equal to zero, the other
characteristic is the fast vanishing of the amplitude in the mentioned direction,
which can be observed on both sides of the interface. In the above context, the
here-investigated wave can be qualified as the surface wave or quasi-surface wave
because of the non-typical behaviour of amplitude.

Comparison of the expressions (66) and (67) indicates for one more charac-
teristic of wave (2) guided by the nonlinear interface: the average flow of power
guided by the wave perpendicular to the interface direction is always equal to zero,
irrespective of the character of amplitude changes in this direction.

9. Discussion of the achieved results

The discussion of the achieved results and their interpretation, being the
topic of this chapter, will be more clear if some results taken from literature are
mentioned first:

1. Linear interface (of two linear media) cannot guide the wave of TE type
[10-16].

2. In the case of nonlinear interface and focusing medium the surface wave of
TE type can be guided, with the amplitude vanishing on both sides of the
interface. Nonlinearity creates then its specific waveguide guiding the wave
of the soliton type [6, 16].

In the context of the above, the results achieved in this paper allow us to define
the following conclusions:

a) The solutions (13) and (17) on nonlinear interface can be matched in such a
way that the boundary conditions on the interface are satisfied as well as the
condition of radiation in infinity. The further effect is that the electromag-
netic wave with TE polarisation can be guided on interface, and penetrates
with its amplitude in the characteristic way, the nonlinear media surrounding
the interface.

b) The amplitude of the wave in surrounding media is given by the function
vanishing in the direction perpendicular to the interface for z > 0 and oscil-
lating periodically for < 0.
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¢) The average flow of power guided by the wave perpendicular to the inter-

d)

face direction is equal to zero, irrespective of the amplitude changes in this
direction.

The above-mentioned electromagnetic field follows the known conservation
of energy flux in the nonlinear medium [13, 14]. From the point of view of
power flow, the wave behaves like the nonlinear surface wave, but at the same
time it shows another surface wave shape of amplitude. From that reason
the analysed TE wave on the interface can be considered as the surface or
quasi-surface wave.

A certain critical minimum and maximum of guided power exist, below and
over which the wave of such type cannot be excited.

The waves with the amplitude variable perpendicularly to the interface are
not a new phenomenon in the problem of nonlinear waves. On the basis of
Kaplan’s papers [7, 8] we know that in special cases inhomogeneous nonlinear
waves with the amplitude variable perpendicularly to the interface can be
excited on the interface. They are described by the amplitude functions
9 9 2{ sin h—? }
A=A +£2B (Bkoz + C), (69)
cos h™?

where B and C' are certain constants, A., is the value of amplitude in infin-
ity. These waves are called longitudinally inhomogeneous travelling waves
(LITW).
The formal analysis of the dispersion equation (34) allows the propagation
constant h to be complex. From the physical point of view this case corre-
sponds to the inhomogeneous wave with the amplitude which is vanishing
towards the direction of propagation, i.e. towards the z direction. The case
of lossless media 1s connected with the leak of wave guided inside the media
surrounding the interface, like in a partial reflection of wave on the interface.
That case will not be however the topic of the detailed analysis in this paper.
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