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BRIGHT AND DARK SOLITONS
IN GENERALIZED KERR-LIKE MEDIA
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In the paper the propagation of short pulses in nonlinear Kerr-like
medium is considered. Pulses are described by the nonlinear Schrodinger
equation in which the generalization of nonlinear dispersion term and the
self-frequency shift are taken into account. The solution of the equation in
the form of quadrature is derived. Both the phase and profile of the pulse
intensity are obtained. The cases of propagating bright and dark solitons
in saturable Kerr-like medium are analyzed. Two models of saturation are
considered. The explicit analytical expressions describing the Kerr limit are
reported. The relations between the medium and propagation parameters
are thoroughly discussed.

PACS numbers: 42.65.Tg, 42.82.Et

1. Introduction

In nonlinear Kerr dielectric strong light pulses of special shape (solitons)
propagate without changing its form due to the compensation of two effects — the
linear group velocity dispersion (GVD) and nonlinear polarization of the medium
(self-phase modulation, SPM) [1-3]. Propagation of these pulses is described by
nonlinear Schrédinger equation (NLSE).

The strong electric field of soliton can cause many other effects in the Kerr
dielectric. One of these effects — the third or higher order dispersion — is linear
[4-6]; the others are nonlinear. In the paper two of such effects are considered
— nonlinear dispersion (ND) [6-9] and self-frequency shift (SFS) [10, 11]. The
NLSE equation generalized by these (GNLSE) terms also possesses solutions in
the form of solitons, but special requirements between parameters of the medium
and soliton are needed in order to preserve the original profile from the pure Kerr
dielectric [6, 12-16].

In the presence of strong soliton field the nonlinear permittivity of the
medium can deviate from the simple Kerr dependence revealing saturation. The
way we should modify it depends on model of saturation. By now the two-level
model [17], the exponential model [18], “square two-level” [19], and polynomial
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models (qubic-quintic) [20-22] have been used most frequently. Since all these
models give very similar results for small fields (far from saturation), application
of any of them is the matter of convenience.

The nonlinear permittivity function determines the form of higher order
nonlinear terms in GNLSE, so its modification affects these terms. For permittiv-
ity being arbitrary function of light intensity (describing non-Kerr but Kerr-like
medium) we can easily realize such change with respect to ND and SFS terms.
The obtained GNLSE equation is possible to solve for bright soliton case [23]. Tts
solution has a form of a quadrature. Solitons in saturable dielectrics described by
this quadrature exist in much wider regime of parameters of medium and soliton
itself compared to the Kerr case.

The above method can be modified to describe dark solitons as well. In
the presented paper we expand this solution to comprise both bright and dark
soliton cases and discuss the case of dark soliton, whose propagation in generalized
Kerr-like medium has not been analyzed yet.

2. The solution of GNLSE

The nonlinear medium reacts to the travelling wave changing its dielectric
permittivity € by enr. This response of the medium for Kerr-like dielectrics de-
pends on light intensity I = | E|? and for the pure Kerr case is simply proportional
to intensity

ENL(I) = al. (1)
If the field intensity is sufficiently strong, the nonlinear part of permittivity deviates
from the rule (1). The natural reason of this deviation is effect of saturation. The
quantitative description of this effect depends on applied physical or mathematical
model. Physically, the two-level model of saturation is the most justified [24]
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with I, being the parameter of saturation (saturation intensity), but for mathe-

matical convenience a few other functions expressing en1, can be assumed. Quite
frequently we use the exponential function instead of (2)

ENL(I)
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with I playing the same role as in (2) (the exponential model of saturation [18])
or apply the polynomial function (qubic-quintic model) [20]

ENL(I):OJ—OJZ/IS. (4)

Since both functions (2) and (3) have Taylor expansions up to second-order terms
exactly in the form (4), therefore all above models should give the same results in
the regime of small intensities I < ;.

Any of the functions (2)-(4) modifies the SPM term of nonlinear Schrédinger
equation [17, 18, 20-23]. But modification of nonlinear permittivity of the medium
should affect the other nonlinear effects being consequences of interaction between
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light and medium. Since the corrections to field distribution caused by these ef-
fects are small, we do not need to change the terms describing these effects if the
fields are small. Nevertheless, the generalization of these terms can be performed
without any trouble [8, 23]. Neglecting the linear third-order dispersion effect and
all processes in which energy is lost, we can write the GNLSE for the slowly vary-
ing envelope U(z,t) of the transverse component of the electric field E(z,t) in the
frame traveling along the z-direction with the group velocity vy = dw/dk of the
packet [23]

AU ks 82U . 5 20 2
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In this equation ks determines the group velocity dispersion, w is the carrier wave
frequency and 7 (real) is the retardation time. The light intensity is defined by the
square of the absolute value of the slowly varying envelope: I = |U]?.

Let us decompose (5) into parts determining the phase @(z,¢) of the pulse
and its intensity. The equation for the phase can be integrated twice giving [23]

P(z,t) = ];—2 (% - .(22) 2 —027T's

2T [° kF[I(s

+w—kz i {(Kj + Denv[I(s)] — %} ds. (6)
In the above expression L is one of the integration constant (the second one has
been set to zero [7]), T" and 1/§2 are temporal and spatial widths of the pulse,
s 1s the normalized coordinate in the frame propagating with the maximum of the
envelope

t— kZQZ

s= okt ™

% 1s combined nonlinear corrections parameter that characterizes both ND and

SFS
k=14wr, (8)

while F(I) is the auxiliary function defined by means of nonlinear permittivity
ENL(I)

F(I) :‘/0 ENL(I)dI. (9)

Note that fields that do not change their shape during propagation depend on one
variable only: I = I(s) in the frame connected with their own maximum.

The intensity function I(s) satisfies the equation that follows from GNLSE
after elimination of the phase function &(z,t). This equation is quite complicated
and can be integrated only once. Nevertheless, the solution of the resulting ordinary
first-order differential equation can be written as quadrature

dr
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In the above integral G(I) is another function built with the help of nonlinear
permittivity enr(7)

G(I) = i 11/15%‘%(1)& - (/IENL(I)dI) : (11)

K2

q and [k are the temporal width and Kerr intensity parameters
q= (2024 w)*T?, (12)
ko

«

w
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p1s the sign of the ratio of group velocity dispersion coefficient to the constant of the
Kerr nonlinearity: p = sgn(ka/a) = £1 and J is another constant of integration.
The quadrature (10) generalizes results reported in [23] for both cases of
bright and dark solitons. The type of the field that propagates along the z direction
depends on J, p and the maximum (or minimum) field intensity Iy, appearing in
the upper limit of integration of (10). In the pure Kerr medium the bright soliton
case 1s characterized by vanishing constant of integration J, positive maximum
intensity Iy and negative sign coefficient p = —1. On the other hand, dark solitons
appear for positive J, vanishing minimum intensity In, and positive sign of ky/c.

Ik =

3. Solitons in saturable Kerr-like media

The integral in quadrature (10) can be performed in both bright and dark
soliton case for nonlinear permittivity function enp(7) given by (1) and (4), that
is for pure Kerr nonlinearity and for polynomial model of saturation. In the gen-
eralized Kerr (GK) case (that is for Kerr nonlinearity (1) and non-vanishing two
last terms in (5)) we can solve the resulting equation with respect to I obtaining
the explicit function I(s) describing profile of the pulse. Doing so for the bright
soliton (J = 0 and p = —1) we arrive at the expression

1 Imax

i(s) = Lo (14)
cosh”s + o

in which the maximum value of intensity I,,4x = Iy and the broadening parameter

o are defined by means of material and soliton parameters &, ¢, and Ik as [23]
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The similar integration performed for the dark soliton (I = 0 and J > 0)
gives its profile described by analogous expression
(1-0)lw sinh? s
I(s) = , 17
(5) cosh? s — osinh? s (17
but meaning of the parameter I, playing the role of the soliton height is different.
Since I(0) = 0, we should take the background intensity 7o, = lims_ 1o I(s) as
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the measure of the height. This height can be determined by broadening parameter
o and the Kerr intensity Ik in a different way than that given in formula (16)

Io = pIx(1 — 30). (18)

The broadening parameter itself depends on nonlinear corrections &, temporal
width parameters ¢ and sign coefficient p in a quite complicated manner

‘1+73Fp\/72+7‘
g = s

19
where v i1s defined by x and ¢ as

v = m (20)

Two signs + and — (two branches of solutions) are possible only in the case p = +1
and k2 < 4. In all other cases only upper sign (—) should be taken. The second
branch of the solution disappears in the pure Kerr limit.

The analytical solution (17)—(20) exists for both type of sign coefficient
p = £1. It contrasts with the pure Kerr medium case (enr,(I) given by (1) and van-
ishing two last terms in GNLSE), in which dark solitons appear only for p = +1.
But since the physical meaning have only positive values of intensity I(s) and
Ioo, certain combinations of material and soliton parameters cannot be taken into
account.

The integration given by (10) is also possible to perform for media with sat-
urable nonlinear permittivity described by polynomial model (4). But the resulting
function s(I) for both bright and dark soliton cases is expressed by a combination
of elliptic integrals of the first and third kind. The explicit form of these integrals
for bright solitons has been published in [23]. Dark solitons are described by more
complicated expressions and we shall not report them. But still they enable to
draw the profiles of the solitons.

Nevertheless, in the two-level and exponential models of saturation the func-
tions F'(I) and G(I) defined by (9) and (11) can be expressed by analytical formu-
las, the integration in quadrature (10) must be performed numerically. In Fig. 1
we compare the resulting profiles for the GK case (without saturation) and all con-
sidered models of saturation for the dark solitons (the case of bright soliton was
widely analyzed in [23], therefore further discussion will concern the dark solitons
case). In order to increase the differences between models we took large height of
the soliton compared to intensity of saturation Ix/I; = 0.4. We can see that for
any model of saturation the propagating solitons have very similar profiles and
height significantly greater than the height in GK medium. This height I, in the
exponential model is slightly greater than I, in the two-level saturation and this
property takes place for any choice of parameters. The approximate qubic-quintic
model gives solitons of height lying between two other types of saturation, but for
another parameters we can obtain another relation.

The influence of saturation on the background intensity (height of dark soli-
ton) I, can be observed in Fig. 2. If the height of soliton in the pure Kerr case I
is at least one order smaller than intensity of saturation Is, we cannot practically
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Fig. 1. Profiles of the dark solitons in generalized Kerr (GKerr) medium (without satu-
ration) and three models of saturation: approximate (approx), two-level, and exponential

(expon).
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Fig. 2. The height of the dark solitons (background intensity) versus intensity of sat-
uration in three models of saturation compared to the height in the generalized Kerr
medium (I, dotted line). The designation of lines is the same as in Fig. 1.

distinguish any saturable medium from the pure Kerr dielectric, nevertheless we
consider ND and SFS terms or not. On the contrary to the pure Kerr case, the
height of soliton cannot be too large — the maximum value Ik 1s about one third
I (it depends on model of saturation and other parameters). For larger solitons
(or smaller level of saturation) we have two branches of solutions (for bright soli-
ton case we have only one branch). The second branch gives solitons much higher
than for the pure Kerr case. For this branch the exponential model gives smaller
background intensity /..
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The relation between soliton height and & is more complex. For quite small
level of saturation Iy/Ix = 5 we have two distinct branches of solutions for GK
case and two distinct branches for approximate model (Fig. 3). The lower branches
exist for any k, but the regime of upper ones is narrower. Solitons in the GK case
appear for small x, while solitons in the approximate model for large . For the
two other models of saturation we have also two branches of solutions, but both
of them exist for large x and extend each other. For larger level of saturation the
upper branch in the GK case disappears, the branches in 2-level and exponential
models change only slightly and the case of approximate model becomes similar
to other saturable cases.

Fig. 3. The heights of the dark solitons as functions of nonlinear corrections. Lines are
designated as in Fig. 1.

The height of soliton as function of temporal width parameter ¢ depends
on the sign p of ks/c, the nonlinear correction parameter x, and the model of
saturation. The whole classification obeys a lot of cases and is quite difficult to
carry out. In Fig. 4 we show four different types of relations 7., (g¢) for a few sets of
other parameters. One of them (the upper left diagram) is obtained for p = —1 and
shows functions I (¢q) differing very much between saturable and GK case. On the
other hand, for p = +1 the GK case is much more similar to the other saturable
cases (lower left plots), however the regime of the second branch in the GK case
is rather narrow. Both cases are obtained for quite large levels of saturation and
are typical of this case. But the slightly lower value of I gives completely different
relation Ioo(gq). As we can see, the 2-level model of saturation enables existence
of solitons in the regime of ¢ forbidden for them in the other models (the upper
right plots). The curves in lower right part of Fig. 4 are plotted for the smallest
value of saturation. Comparing with the previous diagram we observe that the line
characterizing solitons with large temporal width ¢ in the exponential saturable
medium disappeared, while lines corresponding to approximate model of saturation
joined together and split into two another parts — describing solitons with small
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Fig. 4. The heights of the dark solitons as functions of temporal width. Upper left
diagram made for k2/a < 0, three others for k2 /o > 0. The lines are designated as in
Fig. 1.

and large height. We have two possibilities of I, for any ¢ for two-level model of
saturation.

However, there are many other configurations of lines I, (¢), we can observe
several common features. First, in any of diagrams we have a certain regime in
which all saturable solutions are similar and distinctly differ from solution in GK
medium. Second, there are regimes of parameters in which there are no saturable
solutions and these regimes for different types of saturation are different. Generally,
the widest regime of parameters is possible in the two-level model saturation.
Third, all saturable solutions, if exist, are double. It contrasts with the GK case
in which we have a single solution for most possible parameters. Four, the highest
values of I, in the upper branch and the least values in the lower branch (however,
sometimes the least height is obtained in approximate case) result in two-level
model of saturation.

Generally, we can say that the presence of saturation expands the set of
solutions of GNLSE very significantly.

4. Summary and conclusions

The GNLSE (5) possesses solutions in the form of both bright and dark
solitons. The intensity profiles of these solitons are given by quadrature (10). The
integration in the quadrature can be performed analytically for nonlinear per-
mittivity function describing Kerr medium and Kerr-like saturable qubic-quintic
medium, but only in the first case we obtain simple formulae (14), (17). The other
models of saturation require numerical calculations.
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If the height of soliton 1s small comparing to the intensity of saturation,
all saturable models give similar results (Fig. 1). But in saturable generalized
medium, solitons of larger intensity can differ very much from solitons in pure
Kerr medium. The differences are particularly evident for dark solitons (Figs. 2-4).
Such solitons appear in the medium with ko/e < 0, where dark Kerr solitons
cannot exist. But certain regimes of parameters are forbidden for saturable cases,
however in the Kerr medium, solitons of such parameters do exist. For any choice
of parameters saturable solutions given by quadrature (10), if exist, are double.
Moreover, the model of saturation influences very significantly on the behavior of
solution (Fig. 4). The widest regime of possible solutions characterizes the two-level
model of saturation.
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