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In the pap er the propagation of short pulses in nonli near K err- like
medium is considered . Pulses are describ ed by the nonlinear Schr �odinger
equation in w hich the generalizati on of nonlinear disp ersion term and the
self-f requency shif t are taken into account. T he solution of the equation in
the form of quadrature is derived. Both the phase and pro Ùle of the pulse
intensity are obtained. T he cases of propagating bright and dark solitons
in saturable K err- like medium are analyzed. T w o mo dels of saturation are
considered. T he explic it analytical expressions describing the K err limit are
rep orted. T he relations b etw een the medium and propagatio n parameters
are thoroughly discussed .

PACS numb ers: 42.65.T g, 42.82.Et

1. I n t rod uct io n

I n nonl inear Kerr di electri c stro ng l ight pulses of specia l shape (sol i to ns)
pro pagate wi tho ut changing i ts form due to the com pensati on of two e˜ects | the
l inear group vel ocit y dispersion (GVD ) and nonl inear polari zati on of the medium
(self-phase m odul atio n, SPM) [1{ 3]. Pro pagati on of these pulses is described by
nonl inear Schr�odi nger equati on (N LSE).

The strong electri c Ùeld of sol i to n can cause many other e˜ects in the Kerr
di electri c. One of these e˜ects | the thi rd or higher order dispersion | is l inear
[4{ 6]; the others are nonl inear. In the paper two of such e˜ects are considered
| nonl inear dispersion (ND ) [6{ 9] and self-frequency shif t (SFS) [10, 11]. The
NLSE equati on general ized by these (G NLSE) term s also possesses soluti ons in
the form of sol i to ns, but special requi rem ents between param eters of the medium
and sol i to n are needed in order to preserve the ori gina l proÙle from the pure Kerr
di electri c [6, 12{ 16].

In the presence of stro ng soli to n Ùeld the nonl inear perm i tti vi ty of the
m edium can devi ate from the sim ple Kerr dependence reveal ing satura ti on. The
wa y we should m odi fy i t depends on m odel of satura ti on. By now the two- level
m odel [17], the exp onenti al model [18], \ square two- level" [19], and polyno m ial
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m odels (qubi c-qui nti c) [20{ 22] have been used most frequentl y. Since al l these
m odels give very simi lar results for small Ùelds (f ar from satura ti on), appl icati on
of any of them is the matter of conveni ence.

The nonl inear perm i tti vi ty functi on determ ines the form of higher order
nonl inear term s in GNLSE, so i ts m odiÙcati on a˜ects these term s. For perm i tti v-
i ty being arbi tra ry functi on of l ight intensi ty (describi ng non-Kerr but Kerr- l ike
m edium ) we can easily real ize such change wi th respect to ND and SFS term s.
The obta ined GNLSE equati on is possible to solve for bri ght sol i to n case [23]. Its
soluti on has a form of a quadrature. Sol ito ns in satura bl e dielectri cs described by
thi s quadrature exi st in m uch wi der regim e of param eters of m edium and sol i to n
i tsel f com pared to the Kerr case.

The above metho d can be m odiÙed to describe dark sol i to ns as wel l. In
the presented paper we expand thi s soluti on to com pri se both bri ght and dark
sol i to n casesand discuss the case of dark soli to n, who se propagati on in general ized
Kerr- l ike medium has not been analyzed yet.

2 . T he sol ut io n of G N L SE

The nonl inear m edium reacts to the tra vel l ing wa ve changing i ts di electri c
perm i tti vi ty " by " N L . Thi s response of the m edium for Kerr- l ike dielectri cs de-
pends on l ight intensi ty I = j E j

2 and for the pure Kerr case is sim ply proporti onal
to intensi ty

" N L ( I ) = ˜ I : (1)

If the Ùeld intensi ty is su£ cientl y stro ng, the nonl inear part of perm i tti vi ty devi ates
from the rul e (1). The natura l reason of thi s devi ati on is e˜ect of satura ti on. The
quanti ta ti ve descripti on of thi s e˜ect depends on appl ied physi cal or mathem ati cal
m odel . Physi cal ly, the two- level m odel of satura ti on is the most justi Ùed [24]

" N L ( I ) =
˜ I

1 + I = I s
; (2)

wi th I s being the param eter of satura ti on (satura ti on intensi ty), but f or m athe-
m ati cal conveni ence a f ew other functi ons expressing " N L can be assumed. Qui te
frequentl y we use the exponenti al functi on instead of (2)

" N L ( I ) =
˜ I s

2
[ 1 À exp( À 2 I = I s ) ] ; (3)

wi th I s pl ayi ng the sam e ro le as in (2) (the exponenti al m odel of satura ti on [18])
or appl y the polyno mia l functi on (qubi c-qui nti c model ) [20]

" N L ( I ) = ˜ I À ˜ I 2 = I s : (4)

Since both functi ons (2) and (3) have T aylo r expa nsions up to second-order term s
exactl y in the form (4), theref ore al l above m odels shoul d give the sam e results in
the regime of small intensi ti es I § I s .

Any of the functi ons (2){ (4) m odiÙesthe SPM term of nonl inear Schr�odinger
equati on [17, 18, 20{ 23]. But modi Ùcati on of nonl inear perm i tti vi t y of the medium
should a˜ect the other nonl inear e˜ects being consequences of intera cti on between
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l ight and m edium . Since the correcti ons to Ùeld distri buti on caused by these ef-
fects are smal l, we do not need to change the term s describing these e˜ects i f the
Ùelds are smal l . Neverthel ess, the general izati on of these term s can be perform ed
wi tho ut any tro ubl e [8, 23]. Neglecting the l inear thi rd- order dispersion e˜ect and
al l pro cessesin whi ch energy is lost, we can wri te the GNLSE for the slowl y v ary-
ing envelope U ( z ; t ) of the tra nsverse com ponent of the electri c Ùeld E (z ; t ) in the
fram e tra vel ing along the z -di recti on wi th the group velocit y v g = d! =dk of the
packet [23]
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In thi s equati on k 2 determ ines the group vel ocity dispersion, ! i s the carri er wa ve
frequency and § (rea l ) is the reta rda ti on ti m e. The light intensi ty is deÙned by the
square of the absolute value of the slowl y varyi ng envel ope: I = j U j

2 .
Let us decom pose (5) into parts determ ining the phase ` ( z ; t ) of the pul se

and i ts intensi ty . The equati on for the phase can be integ rated twi ce givi ng [23]
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In the above expression L i s one of the integ rati on constant (the second one has
been set to zero [7]), T and 1 =¨ are tempora l and spati al wi dths of the pul se,
s i s the norm alized coordi nate in the frame pro pagati ng wi th the maxi mum of the
envel ope

s =
t À k 2 ¨ z

T
; (7)

ç i s com bined nonl inear correcti ons param eter tha t characteri zes both ND and
SFS

ç = 1 + ! § ; (8)

whi le F ( I ) i s the auxi l iary functi on deÙned by means of nonl inear perm itti vi ty
" N L ( I )

F ( I ) =

Z I

0

" N L ( I ) d I : (9)

No te tha t Ùelds tha t do not change thei r shape duri ng propagati on depend on one
vari abl e only: I = I ( s) in the frame connected wi th thei r own m axi mum .

The intensi ty functi on I ( s ) sati sÙesthe equati on tha t fol lows from GNLSE
after elim inatio n of the phase functi on ` ( z ; t ) . Thi s equati on is qui te com pl icated
and can beinteg rated only once. Neverthel ess,the soluti on of the resulti ng ordi nary
Ùrst- order di ˜erenti al equati on can be wri tten as quadra ture

s ( I ) = Ï

Z I 0

I

d I
q
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q ˜ 2 I 2
K

+
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˜ I K
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: (10)
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In the above integ ra l G ( I ) i s another functi on bui l t wi th the help of nonl inear
perm i tti vi ty " N L ( I )

G ( I ) =
ç 2

À 1

ç 2
I

Z I

0

" 2
N L ( I ) dI À

ê Z I

0

" N L ( I ) dI

! 2

; (11)

q and I K are the tem pora l wi dth and Kerr intensi ty parameters

q = (2 ¨ + ! ) 2 T 2 ; (12)

I K =
!

(2 ¨ + ! ) T 2

Ù
Ù
Ù
Ù

k 2

˜

Ù
Ù
Ù
Ù; (13)

p i s the sign of the rati o of group vel ocity dispersion coe£ cient to the constant of the
Kerr nonl ineari ty: p = sgn (k 2 =˜ ) = Ï 1 and J i s another constant of integ rati on.

The quadrature (10) generalizes results reported in [23] f or both cases of
bri ght and dark sol i tons. The typ e of the Ùeld tha t pro pagates along the z di recti on
depends on J; p and the m axi mum (or m inimum ) Ùeld intensi ty I 0 , appearing in
the upp er l imi t of integrati on of (10). In the pure Kerr m edium the bri ght sol i to n
case is characteri zed by vanishi ng constant of integ rati on J , positi ve maxi mum
intensi ty I 0 and negati ve sign coe£ cient p = À 1 . On the other hand, dark sol i tons
app ear f or positi ve J , vanishi ng m inimum intensi ty I 0 , and positi ve sign of k 2 =˜ .

3. Sol i t ons in sat ur able Ker r -l ik e m ed ia

The integ ra l in quadrature (10) can be perform ed in both bri ght and dark
sol i to n case for nonl inear perm i tti vi ty functi on " N L ( I ) given by (1) and (4), tha t
is for pure Kerr nonl ineari ty and f or polyno m ial model of satura ti on. In the gen-
era lized Kerr (G K) case (tha t is for Kerr nonl ineari ty (1) and non-vanishi ng two
last term s in (5)) we can solve the resulti ng equati on wi th respect to I obta ining
the expl icit functi on I ( s ) describing proÙle of the pul se. D oing so for the bri ght
sol i to n (J = 0 and p = À 1 ) we arri ve at the expression

I ( s ) =
(1 + ¥ ) I m ax

cosh2 s + ¥
; (14)

in whi ch the maximum value of intensi ty I ma x = I 0 and the bro adening parameter
¥ are deÙned by m eans of m ateri al and sol i to n parameters ç; q , and I K as [23]
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; (15)

I ma x =
1 + 2 ¥

1 + ¥
I K : (16)

The sim ilar integ rati on perf orm ed for the dark sol i to n ( I 0 = 0 and J > 0 )
gives i ts proÙle described by analogous expression

I ( s ) =
(1 À ¥ ) I

1
sinh 2 s

cosh2
s À ¥ sinh 2

s
; (17)

but meaning of the parameter I 1 , playing the ro le of the sol i to n height is di ˜erent.
Since I (0 ) = 0 , we shoul d ta ke the background intensi ty I 1 = lims ! Ï1 I ( s ) as
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the measure of the height. Thi s height can be determ ined by broadening parameter
¥ and the Kerr intensi ty I K in a di ˜erent way tha n tha t given in form ula (16)

I
1

= pI K ( 1 À 3¥ ) : (18)

The broadeni ng param eter i tsel f depends on nonl inear correcti ons ç , tempora l
wi dth param eters q and sign coe£ cient p in a qui te com pl icated manner

¥ =

Ù
Ù
Ù1 + Û ´ p

p
Û 2 + Û

Ù
Ù
Ù

3
; (19)

where Û is deÙned by ç and q as

Û =
q

2 ( ç 2
À 4 )

: (20)

Two signs + and { (two bra nches of soluti ons) are possibl e only in the case p = +1

and ç 2 < 4 . In al l other cases onl y upp er sign ({ ) should be ta ken. The second
bra nch of the soluti on di sappears in the pure Kerr lim i t.

The analyti cal soluti on (17){ (20) exi sts for both typ e of sign coe£ cient
p = Ï 1 . It contra sts wi th the pure Kerr m edium case ( " N L ( I ) given by (1) and van-
ishing two last term s in GNLSE), in whi ch dark sol i to ns appear onl y for p = +1 .
But since the physi cal m eani ng have only positi ve values of intensi ty I ( s) and
I 1 , certa in combinatio ns of materi al and sol i to n param eters cannot be ta ken into
account.

The integ rati on given by (10) is also possible to perf orm for m edia wi th sat-
ura ble nonl inear perm itti vi t y described by polyno mial m odel (4). But the resulti ng
functi on s ( I ) for both bri ght and dark sol i to n cases is expressed by a combina ti on
of ell ipti c integ ra ls of the Ùrst and thi rd ki nd. The expl ici t form of these integra ls
for bri ght soli to ns has been publ ished in [23]. Dark sol i to ns are described by m ore
compl icated expressions and we shal l not report them . But sti l l they enable to
dra w the pro Ùles of the sol i to ns.

Neverthel ess, in the two -level and exp onenti al m odels of satura ti on the func-
ti ons F ( I ) and G ( I ) deÙned by (9) and (11) can be expressed by analyti cal form u-
las, the integ rati on in quadra ture (10) must be perform ed num erical ly. In Fi g. 1
we compare the resulti ng pro Ùles for the GK case(wi tho ut satura ti on) and al l con-
sidered models of satura ti on f or the dark sol i to ns (the case of bri ght sol i to n was
wi dely analyzed in [23], theref ore further discussion wi l l concern the dark sol i tons
case). In order to increase the di ˜erences between m odels we to ok large height of
the sol ito n compared to intensi ty of satura ti on I K = I s = 0:4. W e can see tha t for
any m odel of satura ti on the pro pagati ng sol i to ns have very simi lar pro Ùles and
height signiÙcantl y greater tha n the height in GK m edium . Thi s height I 1 in the
exp onenti al model is slightly greater tha n I 1 in the two -level satura ti on and thi s
pro perty ta kes pl ace for any choice of param eters. The appro xi mate qubi c-quinti c
m odel gives sol ito ns of height lyi ng between tw o other typ es of satura ti on, but for
another param eters we can obta in another relati on.

The inÛuence of satura ti on on the background intensi ty (hei ght of dark sol i -
to n) I 1 can be observed in Fi g. 2. If the height of sol i to n in the pure Kerr case I K

i s at least one order smaller tha n intensi ty of satura ti on I s , we cannot practi cal ly
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Fig. 1. ProÙles of the dark solitons in generali zed K err (GK err ) medium (w ithout satu-
ration) and three mo dels of saturation: approximate (approx), two- level, and exponential

(exp on).

Fig. 2. T he height of the dark solitons (background intensity) versus intensity of sat-

uration in three models of saturation compared to the height in the generalized K err

medium (I G , dotted line). T he designatio n of lines is the same as in Fig. 1.

di stinguish any satura ble m edium from the pure Kerr dielectri c, neverthel ess we
consider ND and SFS term s or not. On the contra ry to the pure Kerr case, the
height of sol i to n cannot be to o large | the m axi mum value I K i s about one thi rd
I s (i t depends on model of satura ti on and other parameters). For larger sol i tons
(or smal ler level of satura ti on) we have two branches of soluti ons (f or bri ght sol i -
to n case we have only one branch). The second bra nch gives sol i to ns m uch higher
tha n for the pure Kerr case. For thi s branch the exponenti al m odel gives smal ler
background intensi ty I 1 .
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The relati on between sol i to n height and ç i s m ore com plex. For qui te small
level of satura ti on I s= I K = 5 we have two di stinct branches of soluti ons for GK
case and two di stinct branches for appro xi mate m odel (Fi g. 3). The lower branches
exi st for any ç , but the regime of upper ones is narro wer. Sol ito ns in the GK case
app ear for smal l ç , whi le sol i to ns in the appro xi m ate m odel for large ç . For the
two other m odels of satura ti on we have also two branches of soluti ons, but both
of them exi st for large ç and extend each other. For larger level of satura ti on the
upp er bra nch in the GK case di sappears, the branches in 2-level and exponenti al
m odels change only slightl y and the case of appro xi mate m odel becomes sim i lar
to other satura ble cases.

Fig. 3. T he heights of the dark solitons as functions of nonli near corrections. Lines are

designated as in Fig. 1.

The height of sol i to n as functi on of tem pora l wi dth param eter q depends
on the sign p of k 2 = ˜ , the nonl inear correcti on param eter ç , and the m odel of
satura ti on. The who le classiÙcati on obeys a lot of cases and is qui te di £ cul t to
carry out. In Fi g. 4 we show four di ˜erent typ es of rela ti ons I

1
( q ) for a few sets of

other param eters. One of them (the upp er left di agram) is obta ined for p = À 1 and
shows f uncti ons I 1 (q ) di ˜eri ng very m uch between satura bl e and GK case. On the
other hand, for p = +1 the GK case is much m ore sim i lar to the other satura ble
cases (lower left plots), however the regim e of the second branch in the GK case
is rather narro w. Both cases are obta ined for qui te large levels of satura ti on and
are typi cal of thi s case. But the slightl y lower value of I s gives com pl etely di ˜erent
relati on I 1 ( q ) . As we can see, the 2- level m odel of satura ti on enables existence
of sol i to ns in the regim e of q forbi dden for them in the other m odels (the upper
ri ght plots). The curves in lower right part of Fi g. 4 are plotted f or the smal lest
value of satura ti on. Com pari ng wi th the previ ous diagram we observe tha t the l ine
characteri zing sol i to ns wi th large tem pora l wi dth q in the exponenti al satura ble
m edium disappeared, whi le l ines corresp ondi ng to appro xi mate model of satura ti on
joined to gether and spli t into two another parts | describing sol i tons wi th small
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Fig. 4. The heights of the dark solitons as functions of temp oral w idth. U pper left
diagram made for k 2 =˜ < 0, three others for k 2 =˜ > 0 . The lines are designated as in

Fig. 1.

and large height. W e have two possibi l iti es of I 1 for any q for two- level m odel of
satura ti on.

Ho wever, there are m any other conÙgura ti ons of l ines I 1 ( q ), we can observe
several com mon f eatures. Fi rst, in any of di agrams we have a certa in regime in
whi ch al l satura ble soluti ons are sim i lar and di stinctl y di ˜er from soluti on in GK
m edium . Second, there are regim es of parameters in whi ch there are no satura ble
soluti ons and these regim esfor di ˜erent typ esof satura ti on are di ˜erent. General ly,
the wi dest regime of param eters is possibl e in the two - level model satura ti on.
Thi rd, al l satura ble soluti ons, i f exi st, are doubl e. It contra sts wi th the GK case
in whi ch we have a sing le soluti on for most possible param eters. Four, the highest
values of I in the upp er branch and the least values in the lower bra nch (ho wever,
som eti m es the least height is obta ined in appro xi mate case) result in two- level
m odel of satura ti on.

General ly, we can say tha t the presence of satura ti on expands the set of
soluti ons of GNLSE very signi Ùcantl y.

The GNLSE (5) possesses soluti ons in the form of both bri ght and dark
sol i to ns. The intensi ty proÙles of these soli to ns are given by quadrature (10). The
integ rati on in the quadrature can be perform ed analyti cal ly for nonl inear per-
m i tti vi ty functi on describing Kerr medium and Kerr- l ike satura bl e qubi c-quinti c
m edium , but only in the Ùrst case we obta in simpl ef orm ulae (14), (17). The other
m odels of satura ti on requi re num erical calcul ati ons.
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If the height of sol i ton is smal l com paring to the intensi ty of satura ti on,
al l satura ble models give sim i lar results (Fi g. 1). But in satura ble general ized
m edium , sol i to ns of larger intensi ty can di ˜er very m uch from sol i to ns in pure
Kerr m edium . The di ˜erences are parti cularl y evident for dark sol i to ns (Fi gs. 2{ 4).
Such sol ito ns app ear in the medium wi th k 2 =˜ < 0 , where dark Kerr sol i tons
cannot exist. But certa in regim es of param eters are forbi dden for satura bl e cases,
however in the Kerr m edium , sol i to ns of such param eters do exist. For any choice
of param eters satura ble soluti ons given by quadra ture (10), i f exist, are doubl e.
Mo reover, the model of satura ti on inÛuences very signi Ùcantl y on the behavi or of
soluti on (Fi g. 4). The wi dest regime of possible soluti ons characteri zesthe two- level
m odel of satura ti on.
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