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By operating an AlGaAs waveguide array at the half band gap, we ex-
perimentally demonstrate basic features of discrete systems, which do not
appear in the corresponding continuous counterpart — the slab waveguide.
Under selected initial conditions, we observed nonlinearly induced locking
of an initially moving soliton to the input waveguide. If the power i1s even
higher, originally locked beams start to move again, but in a direction op-
posite to the initial tilt.

PACS numbers: 42.65.Tg, 42.65.Wi, 42.82.Ft

1. Introduction

Spatial solitons can be easily generated in planar waveguides, where the slab
confines one of the dimensions [1]. They originate from a balance between the
material non-linearity and diffraction. By imposing a phase gradient on the gen-
erating beam they can be steered into a desired direction, a property that can
be used for e.g. routing applications in optical fiber networks. The existence of
spatial solitons has also been predicted for an infinite array of identical, weakly
coupled waveguides [2, 3]. In such a structure, when low intensity light is injected
into either one or just a few waveguides, it will couple and spread to an increasing
number of guides as it propagates, thereby broadening its spatial distribution. This
widening of the field distribution is analogous to diffraction in continuous media.
By injecting a strong optical field, it 1s possible to modify the refractive index of
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the excited waveguides through the optical nonlinearity of the material and to
decouple them from the rest of the array. In ideal conditions, particular high in-
tensity beams propagate while keeping a fixed spatial profile localized in a limited
portion of the array, as spatial solitons do in a slab waveguide [4]. Due to this sim-
ilarity, these quasistationary excitations are called discrete spatial solitons. Their
behavior is rather general. Many natural systems consist of simple elements, which
are periodically ordered and mutually interacting. Localized modes in molecular
chains [5], in electrical lattices [6], in Josephson junction ladders [7] or in a coupled
array of mechanical pendula [8] as well as polarons in ionic crystals [9] are just a
few examples of energy localization in discrete systems. It turns out that in par-
ticular the dynamical properties of these solitary waves or discrete breathers [10],
which we are about to investigate in this paper, differ from the continuous case
considerably.

The paper 1s structured as follows. First we explain the experimental setup,
the methods of measurement used and the way we used to model the experiment.
The discussion of the experimental results focuses on the power induced locking
of solitons generated by a tilted beam. A short summary concludes the paper.

2. Experimental realization and modeling

The sample employed for the measures (see Fig. 1) was an array of 41 wave-
guides etched 0.9 pm in the cladding of an AlGaAs slab, which was composed
of a core of Aly15Gag g2As, 1.5 pm thick, sandwiched between two cladding lay-
ers composed of Aly 24Gag 76As. The upper layer was 1.5 ym and the lower was
4.0 pm thick. These waveguide dimensions were chosen to guarantee single mode
operation for a fixed polarization direction. The guides, 4 um wide, had a distance
center-to-center equal to 9 um. The sample was 6 mm long. The experimental
setup is represented in Fig. 1, which is completed by a micrograph of the array.
To carry out the experiments reported in this paper, we used a Spectra Physics
Beam Lock-Tsunami-Opal system. The emission wavelength of the parametric os-
cillator was 1530 nm, delivered under the form of a train of pulses with a length
of about 150 fs and a repetition rate of 80 MHz. This wavelength, below half the
band gap of the material, was chosen in order to minimize the detrimental effects
of non-linear absorption. To excite the modes in the sample we used elliptically
shaped TE polarized beams with a fixed height of 3 pm, but with three different
widths equal to 9 pm, 13 pm, and 20 pm respectively.

Note that only the field at the output facet could be recorded with an infrared
camera. Any insight into the field evolution in the array can only be obtained by
means of numerical simulations. To model the field evolution in the array a coupled
mode theory was applied. Here we assume that the mode profile in the individual
guides remains unchanged, where only the amplitudes a, evolve with respect to
time ¢ and propagation direction z as

. D &% . .
(18% — 5% + 1% + 7]an|” + laslanl4) an +C(ant1 +an-1) =0, (1)
where the quantities involved are the chromatic dispersion D = 1350 ps?/km,

the linear losses oy = 0.9 ecm™!, the Kerr nonlinearity v = 3.6 m~" W1, the
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Fig. 1. Experimental setup and a viewgraph of a sample (B.S. = beam splitter).

three photon absorption coefficient a3 = 107 m~! W~ and the coupling term
C = 0.82 mm~!. All these values, except the linear damping, were derived from
a calculation of the mode profiles and by using material constants published in
the literature. The linear damping, which is mainly due to scattering losses on
imperfections, was determined by evaluating the Fabry—Perot fringes shown by
the sample operated in transmission.

Only if quantitative agreement was required we used Eq. (1) including losses
and transient effects. To 1dentify typical effects of discreteness most of the simula-
tions were based on a more simplified version of Eq. (1). It turned out that most of
the phenomena observed can already be understood if the time dependence of the
field amplitudes is neglected. Note that if additionally all dissipation is neglected,
Eq. (1) transforms into the well known so-called discrete nonlinear Schrédinger
equation (DNLS).

3. Experimental results and interpretations

3.1. Soliton formation and beam break-up

Although it is not the main subject of this paper, we start with a brief dis-
cussion of soliton formation in waveguide arrays. The evolution of untilted beams,
which are centered on a guide, is rather similar to that in the continuous case.
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Fig. 2. Soliton formation and beam break-up: (a) Experimentally recorded field struc-
tures for a wide input beam (beam width 20 pm) and for different power levels; (b) ex-
perimentally recorded output field profile for varying input power levels; (c) simulation
of the width of the output field distribution on the basis of the complete model (see
Eq. (3)) (white: wide output beam, black: narrow output beam). In dependence from
the beam size and the input power three different scenarios can be distinguished: I: linear
diffractive spreading, II: formation of a discrete soliton, I1I: soliton break-up.

Three different scenarios can be distinguished, corresponding to three different ar-
eas in a parameter space spread by the incoupled power and the beam width (see
Fig. 2¢). In the linear case the beam diffracts. The narrower the exciting beam the
more power is required to balance the spreading and to form a discrete soliton.
If the beam is wide enough and therefore close to the continuous limit the beam
finally splits for the highest input power (see Fig. 2). Almost the same break-up
is experimentally observed in a comparable slab waveguide (unetched sample).
The physics behind this effect can be interpreted in terms of the continuous limit,
where this splitting is well known [11]. Above a certain threshold a two-soliton
state is formed. Due to its lack of binding energy it finally splits in the presence
of nonlinear absorption.

Although the action of any absorption is usually not appreciated, the soliton
break-up generates many new and interesting physics, as we will demonstrate later.
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3.2. Ezxperiments with tilted beams

The experiments on dynamical effects were devoted to externally induced
lateral motions of discrete soliton. A glass wedge was positioned before the input
lens in order to generate a tunable phase tilt across the beam. In this way, it was
possible to vary the angle of propagation with respect to the input facet between 0
and about 1 degree (angle measured inside the waveguide).
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Fig. 3. Power induced locking of a discrete soliton for a small initial tilt: (a) field

profiles for low (dashed line) and high (full line) power; (b) contour plot of the output
field profiles vs. input peak power (initial tilt: &2 0.15° in AlGaAs, beam size 9 pm).

In Figs. 3 and 4 we show the output power distribution of a narrow input
beam (9 pm wide) travelling along the array for two different values of propagation
angles. For low energy (see top of Figs. 3 and 4) the tilt results in a power redistri-
bution in the array, but does not affect the basic structure of discrete diffraction.
Most of the input energy is translated by about 80 um (8-9 waveguides) when
compared to the original input position. We note that this translation is not in-
creased for bigger values of the input angle, but only the power imbalance between
the two pronounced wings is increased (compare tops of Figs. 3 and 4). As stated
above, once the geometry of the array is fixed, the final number of waveguides
excited by the diffracting beam depends on the length of the sample rather than
on the input angle. This is completely different from the continuous case where a
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Fig. 4. Powerinduced locking of a discrete soliton for a large initial tilt: (a) field profiles
for low (dashed line) and high (full line) power; (b) contour plot: output field profiles
vs. input peak power (initial tilt ~ 0.5° in AlGaAs, beam size 9 pm).
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Fig. 5. “Antilocking” for a wide tilted beam, field profile vs. incoupled peak power
(beam size 20 pm, input guide 0, initial tilt & 0.2° in GaAs towards guides with n < 0).

constant motion of the beam center with increasing tilt is observed. At least for
small initial tilts the energy redistribution in the array is even faster than in a
comparable slab waveguide. In case of Fig. 3 the same tilted beam injected into a
comparable film waveguide of the same length would only experience a displace-
ment of about 14 pm, where we observe a more than 5 times bigger shift in the
array.

In the nonlinear case, the effects of discreteness are even more pronounced.
Let us consider first the case of lower input tilt (see Fig. 3). As we increase the
power we observe how the light distribution, initially shifted away from the input
waveguide relocates back to the central position. This happens almost immediately
as the discrete soliton is formed. However, the success of this process will depend
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critically from the initial input angle. For an increased tilt already in the low power
case most of the power is confined to one of the diffraction wings. For increased
input power the soliton forms but keeps on moving. For this large angle, we do not
manage to lock the soliton in the central portion of the array even at the highest
input power. Instead, we observe a continuous scan of the output position with
increasing incident power.

The locking behavior described above was studied in literature [3] based on
the DNLS. It demonstrates the power-induced transition from a quasicontinuous
state with high mobility to a highly localized and almost locked one. For low input
power, the soliton can follow the initial tilt, where the field is almost decoupled
from the rest of the array for the highest power levels. If the initial beam is wide
enough to allow for beam break-up nonlinear absorption may introduce some new
effects which partially contradict this simple picture. Again, the soliton follows the
tilt of the input beam for low input power levels first (see Fig. 5). For increased
power levels, it starts to lock to the initial guide, but then it suddenly jumps
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Fig. 6. cw-simulation of the field propagation for beam parameters similar as in Fig. 5
(peak power 1800 W, dashed line: propagation direction of a low power beam): (a) sim-
ulations based on the DNLS (see Eq. (1)). The beam is locked, but oscillations around
the final state occur; (b) CW-simulations with losses included. The beam turns into the
direction opposite to the tilt.
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into the opposite direction. This “antilocking” is related to the beam break-up
introduced above, but can be understood on the basis of cw simulations, if we
accept slightly different values for the scaling and the powers predicted.

We assumed an initial beam similar to the experiment shown in Fig. 5. The
power was chosen high enough to ensure locking and to allow for beam break-up,
if absorption was added. In Fig. 6a we solved the DNLS for ideal conditions (cw,
no absorption), where the soliton stays confined in the initial waveguide. Nev-
ertheless, a closer look reveals damped oscillations around the final position and
small outbursts of radiation during each oscillation period. If linear and nonlin-
ear absorption are added, the power of the soliton is reduced during propagation.
Consequently, its ability to lock to the initial waveguide diminishes. Now the ra-
diation observed previously is becoming stronger and stronger. Finally, almost the
whole residual of the beam leaves the initial guide at the end of the first oscillation
period (see Fig. 6b).

Varying the input angle one finds a continuous transition from beam break-up,
where the final power distribution is symmetric to the “antilocked” state, where
almost all the power is contained in one of the beams leaving the initial guide.

4. Conclusions

In conclusion, we have experimentally demonstrated that discrete systems
present dynamical properties, which differ considerably from those of continuous
ones. We showed how, under certain conditions, an initially moving soliton can
be captured at the initial waveguide, if a certain power is reached. If the power
is high enough to induce beam break-up, an “antilocking” may occur. Hence, the
soliton moves into a direction opposite to the initial tilt.

The author would like to acknowledge the Israeli Ministry of Science and the
British Engineering Physical Science Research Council and the Deutsche
Forschungsgemeinschaft (German Research Foundation) for financial support to
this work.
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