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SPINNING OPTICAL SPATIOTEMPORAL
SOLITONS IN QUADRATIC MEDIA

D. MIHALACHE
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P.O. Box MG-6, Bucharest, Romania

The unique features of the families of bright spinning spatiotemporal
solitons (doughnuts or vortex light bullets) in dispersive quadratic media,
including their stability, are presented. Both analytical results, obtained by
means of a simple variational approximation, and numerical simulations are
presented and compared. It was found that though the variational approx-
imation is not very accurate, it correctly describes the qualitative features
of the spinning spatiotemporal solitons. The spinning light bullets are sub-
ject to a strong azimuthal instability, which leads to the break-up of the
spinning soliton into a set of fragments, each being a stable nonspinning
spatiotemporal soliton.

PACS numbers: 42.65.Tg, 42.65.5f

1. Introduction

Solitons in optical media with quadratic nonlinearities exhibit unique dynam-
ical behaviors and have a potential for applications to photonic devices [1-20]. One
of the fundamentally important properties is the fact that, unlike the Kerr nonlin-
earity [21], the quadratic nonlinearity does not lead to wave collapse in any physical
dimension [3], and thus it opens a way to generate stable spatiotemporal solitons
(STS), or “light bullets” (LB) [21], i.e., fully localized spatiotemporal objects that
result from the simultaneous balance of diffraction and dispersion by nonlinear
phase-modulation. STS in various types of nonlinear optical environments have
attracted a great deal of interest [22—42]. However, collapse does not take place,
making stable LB possible, in media with saturable [25, 26, 31], quadratic [35, 39],
and cubic-quintic [43, 44] nonlinearities, in off-resonance two-level systems [41] as
well as in self-induced-transparency media [40]. Recently in Ref. [41] the propa-
gation of 2D femtosecond optical pulses in an off-resonance two-level medium was
addressed. Within the quasiadiabating following approach, the evolution of the
pulse is governed by a generalized Kadomtsev—Petviashvili equation with coupling
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between the spatial and temporal profile. It was shown that due to the interac-
tion between the transient, retarded diffraction and the electromagnetic absorp-
tion, stable, localized (241)-dimensional optical pulses can be formed. We mention
also that the possibility of forming spatiotemporal solitons in inhomogeneous, dis-
persive nonlinear media using a graded-index Kerr medium as an example was
investigated via a variational approach [42].

On the one hand, STS is a challenging object for fundamental research, as
examples of stable localized objects in two-dimensional (2D) and, especially, in
three-dimensional (3D) nonlinear media are rare in physics. On the other hand,
STS hold promise for potential applications in future ultrafast all-optical logic
devices, where each STS may represent an elementary bit of information, provided
that stable STS can be formed from pulses at reasonable energy levels in available
optical materials.

The formation of 2D STS in quadratically nonlinear media has been recently
observed [45]. In these experiments, tilted-pulse techniques were used to control the
effective group-velocity-dispersion (GVD) and group-velocity-mismatch (GVM)
experienced by the propagating signals [46]. In particular, the effective GVD was
made anomalous and properly enhanced, while the GVM was reduced. An im-
portant peculiarity of the results reported in [45] is that 2D STS can be success-
fully generated despite a nonvanishing value of group-velocity-mismatch between
fundamental-harmonic (FH) and second-harmonic (SH) waves. Very recently, non-
collinear generation of optical 2D STS, based on type-T interaction (the one which
involves a single FH wave) in quadratically nonlinear media has been demon-
strated in a barium metaborate (BazBOy, alias BBO) crystal [47]. The resulting
Y-like geometry of the optical STS generation can be used to implement optical
logical AND gates with ultrafast high-contrast operation. However, 3D STS in
quadratically nonlinear media have not been observed experimentally thus far.

An important feature that must be taken into regard in any physically re-
alistic model of second-harmonic generation (SHG) media is the fact that the FH
and SH waves have different dispersions: while the dispersion at both frequen-
cies must be anomalous to support fully stationary STS [35], their absolute values
are, generally, different. This implies that equations describing the structure of
the STS include a spatiotemporal anisotropy which has no analog in the case of
spatial solitons [35].

Static (nonwalking) STS [35-39] are represented by real solutions to the
corresponding coupled nonlinear wave equations. In this case, STS actually move
at a velocity exactly equal to the group velocity of the carrier waves. In the SHG
model, it is usually assumed that FH and SH group velocities coincide. Then, the
only free parameter of the STS solutions is their propagation constant (nonlinear
wave number shift). An important generalization to the case of “walking” STS,
represented by complex (chirped) stationary solutions, which move at a finite
velocity relative to the carrier-wave group velocity, was recently carried out for
a simpler 2D case [48]. Such a generalization was necessary, first of all, because,
in reality, the FH and SH group velocities are not exactly equal. Moreover, in a
real experimental situation, the mismatch between the two group velocities may
be significant [45], which does not prevent the formation of quadratic solitons
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when the phase-mismatch between the waves is correspondingly large [49], but
makes a detailed theoretical study of the “walking” effects necessary. Families of
1D “walking solitons” were studied in detail as solitary-wave solutions of the SHG
models in the presence of spatial or temporal walk-off [16—-18]. It has been found
that the walking solitons have features essentially different from those of the static
ones, e.g., a different energy distribution between their FH and SH components,
and different soliton contents [50] produced by arbitrary (non-soliton) input pulses.

Next we discuss in some detail recent numerical work on one-parameter fam-
ilies of 3D spinning (vortex) LB in a model of a type-I SHG medium [51]. The
model assumes different coefficients of the GVD at the FH and the SH [35] but
neglects the Poynting-vector walkoff and temporal group-velocity mismatch. Spin-
ning LB in models of this type were very recently considered in a brief form in
Ref. [62], using a variational approximation and very limited numerical compu-
tations. Here we compare, for a selected set of parameters, the exact numerical
results with those obtained by using a simple variational method. However, a cru-
cially important issue is the (in)stability of the spinning LB against azimuthal
perturbations which will be considered too.

2. Spinning light bullets

The scaled equations describing type-I SHG processes (i.e., involving a sin-
gle FH polarization) in the (3+1)D geometry in the presence of dispersion and
diffraction are well known [35]
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Here, T, and X, Y are the normalized temporal and transverse spatial coordinates,
Z is the normalized propagation distance, and u, v are the FH and SH envelopes.
A phase mismatch between the two harmonics is §, and ¢ is the ratio of the GVD
coefficients at the two frequencies. In the particular case ¢ = 1, corresponding to
identical FH and SH dispersions at the two frequencies, the model possesses an
additional spatiotemporal spherical symmetry [35, 37].

We look for stationary solutions to Egs. (1) in the form of v = U(r,T)
x exp (iK1 Z7+isl), v = V(r,T)exp[2 (ik1 Z+is0)], where @ is the polar angle in
the transverse plane, & i1s the nonlinear wave number shift, and the integer s is the
vorticity number or “spin”. The amplitudes U and V may be taken real, obeying
the equations
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In Egs. (2) o and 3 are material and carrier-wave parameters, while x; parametrizes
the family of the stationary solutions. Note that solutions of this form assume that
the phase helix is in the transverse spatial plane (X,Y). One can also consider LB
with a phase helix in a spatiotemporal plane. Because, in general the asymmetry
parameter o # 1, such solutions lack the axial symmetry; their analysis is much
more complicated and therefore they are left beyond the scope of this work.

The total energy of LB is

I:///(|u|2—|—|v|2)dXdeTEIu+Iv, (3)

which 1s a conserved quantity. The other dynamical invariants are the Hamilto-
nian H, the momentum (equal to zero for the solution considered), and the angular
momentum L in the transverse plane. One readily finds from Eqgs. (1), (2) that the
Hamiltonian and the angular momentum of stationary spinning LB are related as
follows:

1 1
H=—=ri1+ =051, 4
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and
L =sl. (5)

In the particular case s = 1 and ¢ = 0 it is possible to get exact analytical
solutions for spinning light bullets via a variational technique. To this aim, we
choose the following Ansatz:

U(r,T) = Arexp(—agr? — agT?), (6)

V(r,T) = Br?exp(—agr? — 2aT?), (7)

where we have introduced the four free parameters A, B, ap, and «g. The La-
grangean of the system to be minimized is L = H + x1/. Finally, we got the
following result for the total energy and the Hamiltonian as a function of the wave
number shift k; and the phase mismatch 3
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B =

9\2/500(200+I€1), (13)
and ke = 2k1 + 0.

We have numerically found one-parameter families of stationary 3D spinn-
ing-LB solutions, having the shape of a doughnut with a hole (phase dislocation)
in the center, for different values of the GVD-asymmetry parameter o. A stan-
dard band-matrix algorithm was used to deal with the corresponding two-point
boundary-value problem. It was found that solutions exist provided that their en-
ergy exceeds a certain threshold. At the exact phase-matching point (3 = 0), the
threshold vanishes. For stationary solutions to decay exponentially at infinity, the
wave number &1 has to obey the requirements x; > 0 for 3 > 0, or k1 > —3/2
for @ < 0. We have found solitons only in the case when the SH dispersion is
anomalous or zero, o > 0.
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Fig. 1. The nonlinear wave number &1 vs. the energy I for the light bullets with spin
s =1 and o = 0 for the mismatch (a) g = -3, (b) =0, and (c) # = 3.
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Fig. 2. The Hamiltonian H vs. the energy I for the light bullets with spin s =1 and
o = 0 for the mismatch (a) § = —3, (b) =0, and (c) g = 3.

To characterize the LB solutions, in Figs. 1 and 2 we display the wave num-
ber «1 and the Hamiltonian A of spinning LB with s = 1 and ¢ = 0 vs. its net
energy I for three representative values of the mismatch 5. In Figs. 1 and 2, the
exact families of stationary LB are shown with full lines, whereas the approximate,
variational solutions are shown with dashed lines. For larger values of the “spin”
(e.g., s = 2), the results are similar, although the threshold energies are higher.
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To conclude the discussion of the stationary solutions, we note that comparison
with the simple variational approximation for the spinning LB, briefly described
in Ref. [62], demonstrates that, although the variational approximation is not very
accurate, it correctly describes the qualitative features of the shape of the spin-
ning LB.

3. Stability and possibility of observation of 3D light bullets

Proceeding the stability simulations, we solved Egs. (1), using the Crank-
Nicolson scheme. The corresponding system of nonlinear equations was solved by
means of the Picard iteration method, and the resulting linear system was treated
by the Gauss—Seidel iterative scheme. For good convergence we needed, typically,
five Picard iterations and eight Gauss—Seidel iterations. The transverse grid step
sizes were 0.08 < AX = AY = AT < 0.12 and, in most cases, the longitudinal step
size was AZ = 0.01. To avoid distortion of the instability development under the
action of the symmetry of the Cartesian computational mesh, we added initial per-
turbations that mimic random fluctuations in a real system (cf. Ref. [53]). Figure 3
displays the outcome of numerical simulations: the doughnut-like spinning LB are
always unstable against azimuthal perturbations, which lead to breakup of the
doughnuts into several nonspinning LB. In fact, this instability 1s quite similar to
the theoretically [54] and experimentally [565] known instability of (241)D one-ring
(fundamental) and two-ring (second-order) spatial bright vortex solitons in sat-
urable and quadratically nonlinear media. It is also noteworthy that higher-order
solitary waves in saturable media exhibit similar transverse instabilities that break
their azimuthal symmetry [53, 56].

Three emerging fragments were found to have unequal energies in the s = 1
case, whereas four fragments are found to have exactly equal energies in the
s = 2 case (see Fig. 3). After the breakup of the doughnut, the fragments fly
out tangentially, rather than keeping to spiral (similar to what is known about
the instability-induced breakup of the (2+1)D spatial vortex solitons [54]). Thus,
the angular momentum of the doughnut “spinning” soliton is converted into the
angular momenta of the emerging nonspinning fragments. Lastly, we have found
that the number of the emerging fragments is roughly twice the original “spin”
value s. The dependence of the number of the fragments on the other parameters
1s fairly weak.

The results of the direct dynamical simulations reported in this work must
comply with the stability analysis based on Eqs. (1) linearized around the sta-
tionary spinning LB. In particular, similar to Refs. [54, 56], we expect that the
number of the emerging fragments i1s determined by the “azimuthal number” of
the perturbation mode having the largest growth rate. However, the corresponding
eigenvalue problem turns out to be prohibitively complex, and is left beyond the
scope of this work.

To create spinning solitons in the experiment, one can give the necessary
vorticity to the original cylindrical laser pulse, passing it through a properly fabri-
cated phase mask [55]. To estimate real physical parameters at which the spinning
light bullets and their instability can be observed in the experiment (similar to the
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Fig. 3. Gray-scale contour plots illustrating the instability of the one-ring spinning
light bullets. In (a) and (b) s = 1, k1 = 3 while in (c) and (d) s = 2, k1 = 2.2. The
other parameters are ¢ = 2 and § = —3. The propagation distance is Z = 8 for s = 1,

and 7 =7 for s = 2. Only the fundamental-frequency component is shown.

experimental observation of the instability of the spatial vortex bright solitons in
Ref. [55]), we can use the parameters at which the 2D LB in the SHG media were
recently observed in Refs. [45]. In the LilO3 optical crystal (in which the necessary
temporal dispersion is induced artificially, by means of a grating), the light with
the intensity ~ 10 GW/cm? self-traps in LB with characteristic temporal and spa-
tial sizes ~ 100 fs and 40 pum, respectively. In the case of the 3D LB, the intensity
should be, roughly, twice as large (see [37, 39]). For the spinning LB with s = 1,
the energy is, typically, five times as large as for the zero-spin soliton with the
same size. Thus, we arrive at an estimate for the energy of the spinning 3D LB of
about 1 pJ. These values of the physical parameters suggest that the experiment
aimed to observe 3D LB should be quite feasible. For the physical interpretation
of the results, it is also important to understand the real meaning of the propaga-
tion distances that appear in the above figures. A typical size of the s =1 LB is,
in the dimensionless units, Az ~ 2, hence the corresponding diffraction length is
zp ~ (Az)? ~ 4. Thus, comparison with Fig. 3 and with other numerical results
suggests that the full splitting of the spinning LB takes place after it has traveled
a distance equal to a few diffraction lengths. On the other hand, a typical value of
zp in physical units is ~ 3 mm [45]. This shows that the splitting process may be
observed in available samples having lengths up to 3 cm [45].



54 D. Mihalache

4. Conclusions

In conclusion, in the framework of the standard model of the type-I second-
-harmonic generation in a three-dimensional dispersive medium, we have found
numerically one-parameter families of spatiotemporal doughnut-shaped spinning
(vortex) solitons and we have made a comparison with the results obtained by
using a simple variational method. All the spinning solitons show a strong symme-
try-breaking azimuthal instability. The instability splits the spatiotemporal soliton
into stable nonspinning light bullets, which fly out in tangential directions. The
nonspinning three-dimensional spatiotemporal solitons are dynamically stable in
most cases, hence in principle they may experimentally generated in quadratically
nonlinear media.
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