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MAGNETO-OPTIC PERIODIC STRIP
STRUCTURES

D. CrprIAN* AND J. PISTORA

Department of Physics, Technical University Ostrava
17. listopadu 15, Ostrava, 708 33, Czech Republic

The paper deals with the optical response from periodic lamellar mag-
netic structure consisting of permalloy strips on Si substrate covered by Cr
protection layer. The ultrathin structure is magnetized in polar geometry and
the spectral dependence of magneto-optic response is computed using rigor-
ous coupled wave analysis. The results are compared with the data obtained
from magneto-optical ellipsometry experiments. Further model computation
helps to understand the basic features of the Kerr rotation spectra and re-
veal the possible reason of deviation between the experimental data and the
model computation.

PACS numbers: 42.25.Fx, 78.20.Ls, 75.70.—1

1. Introduction

The interest in the magnetic layered systems has exhibited increasing ten-
dency in the last decade. The attention, traditionally focused on the ultrathin
magnetic layers, is shifted now to the structures with lateral periodicity. New
grating structures containing anisotropic materials regard generalization of meth-
ods used for isotropic grating description in order to explain experimental results.
Experiments with magneto-optic diffraction were carried out, for example, with
surface relief grating covered by magneto-optic material [1]. Recently, the progress
of technology allowed preparation of biperiodic structures [2]. The contribution is
devoted to the study of magneto-optic lamellar structure confronted with experi-
mental results obtained from magneto-optic spectral measurement.

Theoretical description uses rigorous coupled wave approach (RCWA) some-
times called Fourier modal method (FMM). The first step is the eigenproblem
formulation by direct using of the Maxwell equations. After introducing of appro-
priate Fourier expansion of all quantities, the normal components of the field are
expressed using tangential components only. Such formulation leads to the matrix
eigenvalue problem.
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Then the boundary conditions are applied, originally in the stack-matrix
form. Used form of multilayer approximation in stack-matrix formulation unfor-
tunately suffers from the so-called T-matrix instability. This weak point can be
removed by reformulation of boundary conditions using decreasing exponential
terms only, but the size of linear equation system (simultaneous formulation of
boundary conditions) rapidly increases. That is why it is better to use the method
called S-matrix algorithm [3]. In this case the size of the system matrix remains
the same and the structure is artificially divided into elementary layers. Instead
of field components, S-matrices connecting together amplitudes of up and down
propagating modes are calculated using a recursive algorithm. When the complex
modal amplitudes are obtained, the appropriate quantities (diffraction efficiencies
or ellipsometric parameters) can be calculated. In our case, the model calculations
are used for qualitative explanation of experimental results obtained on double
layer magnetic lamellar structure magnetized in polar geometry.

2. Rigorous coupled wave analysis

The method was developed by Moharam and Gaylord for the case of 1sotropic
grating structures and subsequently generalized to anisotropic slanted gratings by
Rokushima and Yamakita [4]. Recently, the analysis of convergence properties
leading to the improved performance of the method was carried out by Li [5].
The basic idea is to expand the functions describing material parameters and
electromagnetic field components into a Fourier series (Floquet modes) with one
fundamental period in the system. The assumption about one common period in
the periodic system represents fundamental restriction of the RCWA method.

In the further considerations, the space coordinates are normalized by vac-
uum wave vector ko = \/Eopto = 2m/A (& = kox, Yy = koy, Z = koz, for the rest of
the paper the bar will be omitted) and all field components are harmonic functions
of time exp(iwt). As to the material parameters, all materials in the structure are
expected to be non-magnetic in the sense p = g and all the regions are completely
described by their appropriate complex relative permittivity tensors €. In our case
we suppose the lamellar geometry of the grating (strip structure — see Fig. 1), if
the surface relief or relative permittivity profile is not lamellar, then the multilayer
approximation has to be used. Each component of € is represented by its Fourier
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Fig. 1. Schematic drawing of lamellar grating.
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expansion
+ oo
(1) = [eilm exp(imK - v), (1)
m=—0o0
where K = (2n/Ay, 27/ Ay, 27/ A,) is the grating vector, A; are appropriate grating
periods and [¢;;]m are m-th order Fourier coefficient calculated for given material
parameter profile. According to the Floquet theorem, the waves in the grating
region can be expressed in the similar way
+ oo

VYE= Y en(z)expl=i(pmz + gmy + sm2)], (2)
+o0
VZH= " hp(z)exp[—i(pmz + gmy + sm2)], (3)

where Yy = ZO_1 = Veo/to, em(x) and hy,(x) are m-th order space harmonics.
The symbols pm = 2am/As, gm = 2am/A, and s, = sg + 2em/A,, where
50 = \/Esup sin 0;, are related to the appropriate space harmonics, 6; is the angle
of incidence. After introducing of (2), (3) and (1) into the normalized form of
Maxwell curl equations

V x VYo E(r) = —iv/ZoH(7), ¥V x /ZoH(r) = ie, /Yo E(v), (4)

a set of couple wave equations for tangential field components can be written in
the compact matrix form

d .
aftleft, (5)

where Cis 4(2mmax + 1) X 4(2mmax +1) coupling matrix and f; = (ey, h., €., hy) is
the column vector consisting of space harmonics expansion coefficients of tangen-
tial field components. The derivation of the coupled wave equations is based on
Beremann’s work considering optics of anisotropic layered media. For details see
[3] and [5]. The set of equations can be solved using diagonalization procedure for
matrix C. From the physical point of view, this similarity transformation means
the change from the field component representation to the space harmonics am-
plitude representation. The transformation can be written as f, = Tg and the set
of equation for mode amplitudes takes the following form:

%y = ixg. (6)
Here g is the amplitude vector and x 1s the diagonal matrix containing the y;
eigenvalues of C on its diagonal. The matrix T is composed of appropriate eig-
envectors.

The same procedure can be applied to the electromagnetic fields in uniform
region of the structure (for example substrate or superstrate). In this case the
material parameters do not exhibit any periodicity and the coupling matrix C
takes the block diagonal form. Each 4 x 4 block corresponds with one diffraction
order. For basic types of anisotropy, the eigenvalues and eigenvectors can be written
explicitly. When the uniform region consists of isotropic material, the eigensolution
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takes the form of TE and TM waves. In the uniform region, the space harmonics
are uncoupled.

The main task in the grating theory is to find the complex amplitudes of
space harmonics in the superstrate and substrate of the structure where they rep-
resent reflected or transmitted diffracted waves. According to the electromagnetic
field theory, appropriate boundary conditions has to be fullfilled for the tangen-
tial field components on each interface. The easiest way to do that is to use the
so-called T-matrix method, where the field components in the superstrate and
substrate are connected via the product of propagation and boundary matrices
(continuity relations) of each layer in the structure. This method is used without
any problem in the optics of layered media, but when it is applied to the grat-
ing theory, it exhibits devastating instability during numerical computation. The
trouble arises from higher order modes, whose eigenvalues y; have large imaginary
parts. This leads to rapidly growing exponential factors and subsequently, the total
matrix of the structure is badly scaled. Such behaviour brings serious limitation
in the thickness of the structure and especially surface relief gratings cannot be
treated in this way. One possibility how to avoid this problem is to divide the
modes in each layer in two groups — “up” and “down” propagating modes and
fullfil the boundary conditions on all interfaces simultaneously (see for example
[6]) using decreasing exponentials only. Unfortunately, in this case the dimension
of the total matrix of the structure rapidly increases with the number of layers.

The suitable solution is to retain the concept of proper using only decreasing
exponentials and to divide the structure artificially into the system of thin sublay-
ers (the multilayer approximation is naturally included). The total matrix of the
structure 1s computed by a recursive procedure. The method is called S-matrix
algorithm and its analysis was performed by Li [3].

(n+1) superstrate

[x,1

(n)

[Xn1]

[x5]
[x;1]

[%0]

(2)

(1) z

0) substrate
[x4 1

Fig. 2. Schematic drawing of layer system used for S-matrix algorithm, the numbers
in brackets are related to the media, square brackets denote boundaries.

Here, we briefly review basic ideas of the method. The structure is artifi-
cially divided into n elementary sublayers (see Fig. 2), the waves are distinguished
according to their transverse direction of propagation. The appropriate wave am-
plitudes constitute two vectors: u contains the amplitudes of waves propagating
in the 4+# direction (“up” modes), whereas d is related to —z direction (“down”
modes). In order to use decreasing exponential terms only, one seeks the matrix S
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connecting the wave amplitudes in the following way:

u(”‘l'l) u(o)
— s
l o ] =5 l J+D) ] ) (7)

where index (0) denotes the substrate and (n + 1) superstrate. This matrix can
be computed using interface matrices s connecting the wave amplitudes in two
adjacent layers (j) and (j + 1) in the same way as (7)

u<if1>[x]» + 0] ) u'(j)[xj - 0] )
d9[a; 0] dH ;4 0] |

where the symbols +0 and -0 denote the direction in which we are approaching the

j-th boundary. The interface matrix sU) can be calculated either from boundary

matrix t0) = [TU+HD]=1TU) or directly from TU+Y and TU) elements (for details

see [3]). The propagation across the layer in transverse direction is introduced using

the matrix 3) which uses only decreasing exponential propagation factors (d; are
layer thicknesses)

500 = [ L 0 ] ] 50 [ expl-ix?7d;] 0 ] . (9)

0 exp[—ixV)td; 0 1

During the process of computation, the matrix S(j), which connects the field am-
plitudes on both sides of stack of j layers is computed using 5U=1 and 9. For
this purpose, the set of recursive formulae can be written in the following form:

S = H00 — SRSA,
S = ) + 40 - ST,
S = 5670+ S s - SV

: - et

S = STV = ST (10)
where the recursion can be started by setting 59 = 50 and the symbols S;;
and §;; are related to appropriate matrix blocks. The amplitudes of reflected and

transmitted waves can be easily obtained from total matrix S as
u(HD) = g gt glo) = g(n) gintt), (11)

When the complex wave amplitudes are obtained, then diffraction efficiencies
and ellipsometric quantities can be calculated. The diffraction efficiencies of n-th
order are defined as the ratio of the power carried by the reflected or transmitted
wave of the appropriate order to the power carried by the zero-order incident wave
and they are done by the ratio of normal components of the Poynting vector. For
example, appropriate expressions for the reflection of TE wave (s-polarization) are

ss __ Re[Xglsup)-I—]

e TE+ ||2’ sp Re[Xg’Lsup)-I—]
Re[y5™"7]

TM+ (|2
||g(sup)n Nrn = Re[xgsup)_] || 3 (12)

| |g(sup)n
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for transmission diffraction efficiencies hold similar formulae

Rl )y aes e, gy = RO T e (13)
sup)— sub)n n - su sub)n .
RG[XE) p) ] (sub) Re[x} (sup)— ] 9(sup)

In both cases we assumed that the amplitude of the incident wave was normalized
to unity. Usually, the magneto-optic effects connected with the polarization con-
version are very small and it is hard to detect them using conversion diffraction
efficiencies. Then it is better to use ellipsometric methods. In this case, instead of
diffraction efficiencies, the quantities related to polarization state are used in the
form of complex reflection and transmission coefficients for every n-th diffraction
order

ss __
tn —

TE+ TM+ TE— TM—
g(sup)n sp g(sup)n 55 g(sub)n spo_ g(sub)n

W= R "n = TfEe s In = Tmmo > W = TFEe (14)
g(sup)O g(sup)O g(sup)O g(sup)O

Using those complex coefficients, polarization state quantities are introduced in
the form of complex Kerr rotation (for reflected light) and complex Faraday rota-
tion (for transmitted light), where the real part represents the polarization plane
rotation and the imaginary part the ellipticity of the wave (the example of s and
p complex Kerr effect)

TP rb?

QSKs,n = ng,n‘i‘iEKs,n == ¢Kp,n = ng,n‘i‘iEKp,n = _70?%' (15)

n

bl
53
rﬂ

The above stated formulae hold in the case, when the magneto-optic effects are
small, ie. ¢xn = 0 and cx , & 0.

3. Experimental and calculated data

The RCWA method, briefly described in the previous parts was used for
model calculation considering magnetic strip structure. The structure consists of
permalloy strips covered by Cr cover layer in order to protect the strips against at-
mospheric oxidation (see Fig. 3). The composition of permalloy was FeagNigg, and
the structure was prepared by rf sputtering on Si substrate. The strip period A,
varied from 910 to 970 nm and the strip width w changes from 630 to 700 nm. The

A,

Si substrate

Fig. 3. Schematic drawing of double-layer magnetic periodic strip structure.
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Fig. 4. Kerr rotation p spectra, comparison of experimental (points) and calculated
data (lines).

thickness of the permalloy layer ¢, was 10 nm and the Cr cover layer thickness was
2 nm. The structure was magnetized in polar geometry (the magnetization is per-
pendicular to the surface of the sample) and it was studied using magneto-optical
ellipsometry. During the measurement of the Kerr effect, the spectral dependence
of p Kerr rotation was obtained in the spectral region 240 nm to 1 pum for the

Geometric parameters of samples.

TABLE

Sample | Film thickness | Cover thickness | Period | Strip width | Fill factor
) ) ) | [om)
wl 10 2 910 630 0.692
w2 10 2 970 680 0.701
w3 10 2 910 700 0.769
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samples denoted here as wl, w2, and w3 (see Fig. 4). The geometric parameters
of the samples are summarized in Table. The experiments were carried out under
the condition that the samples were magnetized to their saturation state. Because
of the geometry of the experimental setup, the measurements were performed for
0; = 7° angle of incidence and only the data for specular reflection (zero diffrac-
tion order) were available. The comparison of measured and computed Kerr data
are depicted in Fig. 4 for all three samples. Although the model computation de-
scribes qualitatively the basic features of the spectra in visible region, there is a
quantitative disagreement in the near IR region. In the following sections we make
an attempt to explain the behaviour of the optical response of the structure using
further model computation carried out for the samples wl and w2.

4. Discussion

All the computed results were obtained with maximum mode order in the
approximation equal to 40. In this part we tried to show the influence of the grating
geometry on the Kerr rotation in the 300-850 nm spectral region. In near UV and
IR the spectral dependence of permalloy material constants were not available.

The basic character of the spectra manifested by the peak near 400 nm is
done by the spectral dependence of materials parameters of the substrate, where
they undergo dramatic changes. This behaviour is reproduced in quantities de-
scribing the structure response — the example (wl sample) can be seen in Fig. b,
where total absorption in the structure is depicted for s and p incident polariza-
tion. The losses are defined as the difference between 1 and the sum of all reflection
and transmission diffraction efficiencies. The same features exhibit the 7§ and 5t}
efficiencies (see Fig. 6).
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Fig. 5. Total losses.
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Fig. 7. Kerr rotation p.

Because the change of polarization state represented in experiment by the
Kerr rotation (see Fig. 7) is connected with the power conversion, we calculated
appropriate nP: diffraction efficiency for n = —1,0,41. As to Fig. 8, one has to
take in mind that for higher diffraction orders the waves are purely evanescent for
A > Agr, where Ar is the appropriate Rayleigh wavelength. The position of the
Rayleigh wavelength is clearly seen in Fig. 9 and Fig. 10, where the 777 and £
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Fig. 9. Diffraction efficiency ;5.

are computed for higher diffraction orders (n = —2...+2). In all figures, it can be
clearly seen that p polarized waves exhibit stronger intermodal coupling than the
s polarized waves and the effect is more pronounced for positive diffraction orders.
The behaviour near the Rayleigh resonances has to be naturally manifested in the
jumps of the Kerr rotation (see Fig. 7), although the effect is not so pronounced
as in the case of diffraction efficiencies.
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Fig. 12.  Fill factor influence.

We have oriented our attention to the shape of the spectra so far, now we
try to explain the reason why in the case of the w2 and w3 sample the calculated
curves are shifted with respect to the experimental points. The model computation
in this part of text are related to the w2 sample.

At first, the influence of the layer thickness ¢; was examined. For that pur-
pose, the Kerr rotation p spectra were computed for 5, 8, 10, 12, and 15 nm film
thicknesses. The results are depicted in Fig. 11. When the thickness increases, the
magneto-optic effect became stronger and the curves are shifted to the higher val-
ues of the Kerr rotation almost without any change of their shapes. It seems that
the structure is too thin to support transversal resonances which could influence
the shape of the spectra. The change of fill factor (defined as the ratio of the strip
width to the period) has the similar effect — see Fig. 12.

The last geometric parameter, which could influence the spectra, was the
cover layer thickness ¢.. In order to highlight this influence, we computed the
spectra for five different values of ¢.. Increasing thickness of cover layer induced
the decrease in the Kerr rotation magnitude, the shape of the spectra changes only
slightly as can be seen in Fig. 13. It is natural to consider that the cover layer acts
as the shield against the incident waves because of its absorption — the highest
values of magneto-optic effect are related to the bare permalloy strips.
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Fig. 13. Cover layer thickness influence.

5. Conclusion

The magnetic periodic strip layer structure was studied using RCWA method
and the computed results were compared with data obtained from magneto-optical
ellipsometry. It was shown that the quantitative disagreement between computed
and experimental data in the visible region can be caused by lower accuracy of
geometric parameter values (film thickness, cover thickness, and fill factor) used
as input data to the model. Using the variation of those parameters; the compute
curves could be successfully fitted to the experimental data. The qualitative dis-
agreement in the shape of the Kerr rotation spectra pronounced in near IR has
its origin probably in poor spectral characterization of material parameters of the
structure. The most probable source of deviation can be the data of permalloy.
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