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THE SPIN-WAVE STIFFNESS
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The stiffness constant of the stationary spin excitation is calculated
employing density functional theory and the phenomenological Ginzburg-
Landau energy functional in a site form. The exchange parameter of the
magnetic functional is estimated within the framework of the nearest neigh-
bours intermolecular interaction and the energy gain of non-magnetic state
per atom. The stiffness constant of Fe, Co, and Ni metals is found based
on the energies of spin polarization calculated numerically in the local spin
density approximation by Moruzzi et al. as well as by Kubler. The calculated
stiffness constants are compared with other theoretical calculations and ex-
perimental data.
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1. Introduction

In the past years there has been a development of theory of non-collinear
magnetic states (for a review, see [1]) and calculations of magnon spectra [2-4]
within the framework of classical static density functional theory (DFT) of Ho-
henberg and Kohn (HK) [5] and Kohn and Sham (KS) [6] and the Barth and Hedin
extension [7] to the spin polarized case. A tool for studying dynamic interactions,
as well as for the computation of excitation energies is the time dependent DFT of
Runge and Gross [8]. To calculate the KS potentials of a stationary excitation, it
is purposeful to employ the exchange-correlation (xc) energy functional EXc [p↑, p↓]
of the ordinary density functional theory [9]. The KS Hamiltonian has the form
[1, 7]:
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Here, T and σz are, respectively, the unit and Pauli matrices. The effective potential
and the xc field are functionals of the up and down densities: Veff = Veff [p↑, p↓] (τ),
Bxc = BXC [

p↑, p
↓ ](r). A time dependence of HKS is through the spin ź rotation

matrix U(19, φ). Polar angles 19 and φ of the direction of spin polarization m(r, t)
specify the stationary spin excitation. The arrangement {19, φ} gains a status of
spin-wave parameter. The vector {19,φ} can be taken uniform within the atomic
cell, and for a static state is constant and describes a non-collinear structure, or a
Bloch wall. For a flat spin-wave, the spin arrangement parameter {19, φ} is confined
to the form: 19 = const and v) = ω q t — rql . Here, ω q and q are, respectively, the
frequency of spin-wave and the magnon wave vector. In principle, the magnetic
stationary excitation could be determined within a self-consistent calculation of
the time dependent Kohn—Sham and the torque Landau—Lifschitz equations. This
is cumbersome and the Ginzburg—Landau magnetic functional is employed calcu-
lating the functional parameters in a static limit.

2. The exchange parameter

In the spirit of DFT, the total energy expression of a stationary magnetic
state has to be a functional of the electronic density, p = p(τ), and the spin
polarization m = m(r, t). The Ginzburg—Landau (GL) magnetic functional is the
simplest example. In the classic GL approach [10, 11], the total energy expression
is a functional of the magnetization M = —gμBSl/V and a gradient contribution
of M. Here, g is the spectroscopic splitting factor, Sl and V1  are, respectively,
the site spin and the site volume assigned to the 1-th cell. In the frame of GL
functional, the energy gain of a magnetic stationary excitation is approximated by
the site form

For a stationary state, the total energy E[p, m] = E[

p↑, p

↓ , {19, φ}] depends on the
parameter {z9, φ} both explicitly and implicitly via the up and down electronic
densities pt = pt [{19, φ}](τ) and p1 = P1 [{19,φ }](r). The total energy is minimized
with respect to the electronic densities pt and P1. In the ground state, the densities
and the total energy are, respectively, p0 = p0 (r), m0 = m0 (r) and E[p0, m0]. The
expansion coefficients: α, b and the exchange parameter J(B) can be provided by
the DFT calculations. Small correction of the orbital momentum is neglected and
the factor g = 2. The z-direction of the global coordinate system is specified by
the external magnetic field, B0 = (0, 0, —B 0 ), which usually is assumed to be zero.
In the ground state, the site spins are S0.

Our numerical discussion of a stationary spin excitation, within DFT and
the phenomenological energy functional (2), will be confined to the intermolecular
interaction between nearest neighbour pairs and the approximation: S? So .
This approximation sets up a simple relation between the energy gain of (2) of
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non-magnetic state per atom and the exchange parameter, cf. [12]. For literature
values [13, 2] of the energy gain of non-magnetic state per atom, the magnon
stiffness constant values have been found and are shown in Table. The present
results are in a fair agreement with experimental data. The calculated stiffness
constant within [13] seems to be not so close to experiment as the calculation based
on [2], since the approximation: S? = Só , is postulated for the paramagnetic state.
To calculate dynamical properties of the ferromagnetic 3d metals we must take into
account an effect of spin-fluctuations on the site spin momentum [4]. The energy
gam of non-magnetic state per atom of [2] is approximated by a superposition
of spiral states with the constrained site spin, S? = Só and 19 = π/2. This gives
the astonishing agreement with experimental low temperature data of the stiffness
constant in Table. For the itinerant model with the Hubbard Hamiltonian, the
calculated stiffness constant [16] of fcc Co is 212 mRy bohr 2 , and for bcc Fe and
fcc Ni [18] are, respectively, 147 and 174 mRy bohr 2 . The agreement of the latter
seems to be not so close to experiment as the present one, since the itinerant model
neglects the effect of spin-waves on the intermolecular distance (invar effect).
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