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The recently discovered in-plane optical anisotropy of [001]-grown
quantum wells offers a new theoretical and experimental insight into the
electronic properties of semiconductor interfaces. We first discuss the cou-
pling of X and Y valence bands due to the breakdown of rotation inversion
symmetry at a semiconductor hetero-interface, with special attention to its
dependence on effective parameters such as the valence band offset. The in-
tracell localization of Bloch functions is explained from simple theoretical
arguments and evaluated numerically from a pseudo-potential microscopic
model. The role of envelope functions is then considered, and we discuss the
specific case of non-common atom interfaces. Experimental results and ap-
plications to interface characterization are presented. These calculations give
a microscopic justification, and establish the limits of the heuristic “Hpr”
model.

PACS numbers: 78.20.Fm, 78.20.Jq

1. Introduction: breakdown of rotational symmetry
at semiconductor interfaces

It has been recently realized that the reduction of crystal symmetry at an
abrupt hetero-interface may affect quite significantly the optical properties of semi-
conductor quantum wells, and in particular their isotropy with respect to the
in-plane polarization of a light beam propagating parallel to the [001] growth axis.
The cubic point group symmetry Ty of the zinc-blende lattice is reduced to Cagy
at an abrupt interface: it looses not only the translational invariance along the
2-axis, but also an element of rotational symmetry, namely the invariance by the
fourfold rotation inversion around the [001] direction. The arrangement of chem-
ical bonds in the vicinity of an interface anion, shown in Fig. 1, illustrates this
symmetry breakdown which has been until recently neglected in the classical enve-
lope function theory (EFT). There are two bonds pointing forward along the [111]
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Fig. 1. Scheme of the geometrical arrangement of chemical bonds at a semiconductor
interface.

and [111] direction and two different bonds pointing backward along the [111] and
[111] directions. The crucial point is that valence electrons lying on backward and
forward bonds of an interface cell experience different potentials and interact with
light polarized either along [110] or [110]. In the absence of spin—orbit coupling, the
threefold degeneracy of the bulk valence band with eigenfunctions X, Y, and Z is
lifted by the quantum confinement into three band with symmetries X/, Y’, and
Z, where X’ and Y’ refer to P-type orbitals oriented along the [110] and [110] di-
rections. These functions correspond to different representations of the group Cay,
rotation anti-symmetric with respect to the planes &’ = 0 or ¢ = 0. If the quantum
well is symmetrical, its point group symmetry is Dy; and the X’ and Y’ represen-
tations are degenerate, but if it is asymmetrical, it retains the reduced symmetry
Cy of a single interface and the X’ and Y’ eigenstates are non-degenerate, which
corresponds to in-plane anisotropy. As will be discussed further, reintroduction of
the spin—orbit coupling at this point transforms the X’'—Y splitting into a mixing
of the heavy and light hole states in quantum well (QW) structures. Although
this mixing had been discussed as early as 1985 in the tight-binding calculations
of Schulmann and Chang [1], the topic has recently attracted much attention
with the experimental discovery of the related giant optical anisotropy in quan-
tum well structures [2] where the host materials do not share a common atom or
non-common atom (NCA)-QWs, and the simultaneous development of envelope
function theories [3-5] and atomistic (empirical [2, 6, 7] or ab-initio [8]) calcula-
tions of this phenomenon. Optical anisotropy is sensitive to the details of interface
structure, such as chemical nature of interface bonds, interface sharpness, etc... A
detailed analysis of the dichroism and birefringence of quantum wells is therefore
a new and major characterization tool to analyze the properties of semiconductor
interfaces.

The purpose of this paper is to present recent theoretical developments of this
topic, and experimental results illustrating the role of interfaces, and the effect of
their detailed structure. The paper is organized as follow: in the second section, we
discuss the main features of the zone-center Bloch functions, both from symmetry
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arguments, and numerically using the empirical pseudo-potential approach in the
zero spin-orbit limit. Then we estimate the splitting of the eigenstates with X’
and Y’ symmetries in an interface unit cell, and introduce the envelope functions
to obtain the splitting between corresponding quantum well states. The spin—orbit
coupling is then introduced to recover the description of quantum well eigenstates
in terms of mixed heavy- and light-hole states which allows the comparison with
experiments. The last section is devoted to experimental analysis of quantum wells,
with special emphasis on the properties of NCA systems, and on the effect of an
external electric field, or “quantum confined Pockels effect” (QCPE).

2. Microscopic wave functions in the zinc-blende semiconductors

All of the following paragraph is known from experts of the different theoret-
ical techniques, but apparently not from the semiconductor community at. large.
Since the properties of microscopic wave functions is the key point of this paper,
we first review a few general aspects. The k- p theory is based on the consideration
of the symmetry of the zone-center eigenstates and a small number of interband
matrix elements of the momentum: it generally ignores the problem of the intracell
shape and localization of the Bloch functions (although, of course, the question
would be implicitly solved if a complete basis were considered). However, when
the crystal potential is modified on the scale of a unit cell, as for example in the
case of an abrupt interface, it is intuitively evident that the matrix elements of the
perturbation will be strongly dependent on the local properties of the Bloch func-
tions. Therefore, it is crucial to use a realistic description of these functions and to
examine their robustness against perturbations. Classical microscopic band struc-
ture calculations such as empirical tight-binding or pseudo-potentials may provide
the necessary insight, but their predictions have to be examined critically. For in-
stance, practical applications of the tight-binding models discussed in Ref. [9] or in
classical textbooks are usually based on the assumption that the overlap between
atomic functions centered on neighboring atoms is vanishingly small, in spite of
significant intersite transfer matrix elements. This assumption implies obviously
that the electronic density of any band has a minimum between two neighboring
atoms, which, as discussed below, is incorrect. We of course do not intend here to
criticize the tight-binding theory as a band structure parametrization method, but
simply insist on the fact that the usual physical image of the microscopic wave
functions is incorrect and niay lead to qualitatively incorrect ideas. Conversely,
the empirical pseudo-potential method is based on the Fourrier series expansion
of the Bloch functions, and in principle its accuracy is limited only by the number
of harmonics considered in the calculation, and the careful fitting of bulk band
structure. In the following, we discuss microscopic wave functions obtained in the
simplest pseudo-potential approach, ignoring spin—orbit interaction. The micro-
scopic potential of a bulk semiconductor is expanded as

V(r) = Z Ve exp(iG'r), ‘ (1)
T

where the coefficients Vi are fitted to reproduce the bulk band structure. The
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Fig. 2. (a) Microscopic empirical pseudo-potential of bulk GaAs in the plane (110).
(b) Three-dimensional plot of the equipotential surface at V(7) = —12 eV.

crystal Hamiltonian can easily be diagonalized in such a plane wave basis, yield-
ing not only the correct energies, but also the microscopic shape of Bloch func-
tions. These expansions, limited to three harmonics, correspond to a kinetic energy
cut-off of 60 eV. While certainly insufficient to obtain details of the microscopic
potential, this accuracy is good enough to describe the potential wells associated
with the chemical bonds, and to provide a fair fit of the first valence and con-
duction bands throughout the Brillouin zone. Using pseudo-potential form factors
given in Ref. [10], we show in Figs. 2-4 a few aspects of the microscopic potential
and wave functions in GaAs. As can be seen in Fig. 2a, the potential in the plane
¥ = 0 which contains the forward bonds of Fig. 1 has two deep wells nearly at the
center of the Ga—As bonds. Typical figures are a well width of Ly = 2 A and a well
depth of 20 eV. The equipotential surface V() = —12 eV shown in Fig. 2b illus-
trates this feature even more obviously. The isodensity surface of the X’ and Y’
functions displayed in Fig. 3 show that these wave functions are strongly localized,
respectively in the backward and forward parts of the unit cell: 70% of the total X’
(resp. Y) electronic density is contained in the displayed surfaces. Conversely, the
Z function (Fig. 4a) is equally distributed in the two parts of the cell. As for the
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Fig. 3. Isodensity surfaces of the X’ and Y’ valence Bloch function at the zone centerin
bulk GaAs, showing their respective localization in the backward and forward half-cells.
Fig. 4. Isodensity surfaces of the Z valence Bloch function and S conduction Bloch
function at the zone center I" in bulk GaAs.

first conduction band shown in Fig. 4b, it does look like an antibonding combina-
tion of atomic S-like orbitals. These general features of the tetragonal bonds show
little material-to-material variation: the main modification observed when using
the pseudo-potential coefficients of CdTe is the increased ionicity, characterized
by the fact that the electron density concentrates closer to the anion, both for the
valence and conduction bands. '

As the intracell localization of the valence states is of central interest, it is
finally interesting to justify it on the sole basis of symmetry considerations. In the
following, we shall decompose the kinetic energy contribution to the Hamiltonian
as a sum of its contributions along the three orthogonal directions ', y’, and z.
We can formally express the kinetic energy of Bloch state along the direction z’
as

2 92 2
R L @)
2m 92, 2m d2,
where d is a typical variation length of the Bloch function along the direction z’.
By definition, an eigenstate of symmetry X’ is antisymmetrical with respect to the
plane ' = 0 and symmetrical with respect to the plane 3 = 0, while an eigenstate
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of symmetry S or Z is symmetrical with respect to both reflections. Hence X'(r)
has a node in the plane ' = 0 which contains the two backward chemical bonds.
If X’ was confined equally in the four potential wells, it would experience a much
larger (about four times larger) kinetic energy in the two backward wells where it
has a node than in the two forward wells which are separated by the plane 2’ = 0,
and where the X’ symmetry can be accommodated with keeping a constant sign
inside each well. The characteristic variation length of the X’ function is of the
order of only d;v = Ly/4 = 0.5 A in the backward region, while it would be of
der = Ly/2 = 1 A in the forward wells. Corresponding kinetic energies are of the
order of 20 eV and 5 eV, respectively: kinetic energy acts as a strong potential
repulsing the X’ state out of the backward potential wells, and Y’ states out
of the forward wells. Another instructive way of understanding these localization
properties was suggested by Khurgin [11] using a tight binding point of view: if one
builds solutions of X’ symmetry from atomic X/ and X% functions, the intersite
overlap (strong, albeit usually neglected in the band structure calculations) is
binding in the forward region and anti-binding in the backward region.

To conclude this section, let us note that from the consideration of the orders
of magnitude of the potential depth and length scale, the microscopic wave func-
tions must be very robust against perturbations of the order of a fraction of eV
such as a band offset, the spin-orbit interaction or a uniaxial stress: in general, first
order perturbation theory should be enough to describe the effect of such pertur-
bations. On a more intuitive ground, Figs. 2-4 suggest that the pseudo-potential
coefficients are essentially related to the properties of the potential wells associated
with individual bonds (including the admixture of all kinds of atomic states in the
bond formation).

3. Splitting of X’ and Y’ states at a GaAs—AlAs interface

In order to study a GaAs—AlAs interface we shall first consider an interface
unit cell centered on an As atom. The symmetry plane ' = 0 contains two back-
ward GaAs bonds while the ¥ = 0 plane contains two forward AlAs bonds. In
order to describe the microscopic potential V(r) over the interface cell, we shall
rely on the pseudo-potential approximation.

Let us call Vgaas(?) and Vajas(7) the oscillatory parts of the bulk em-
pirical pseudo-potentials of these two materials, which can be viewed as some
“smoothed” approximation of the microscopic potential experienced by valence
and conduction electrons. The potential near the interface depends on two differ-
ent phenomena: (i) the physical nature of the bonds is different in the forward and
backward regions, which can be characterized quantitatively by the difference of
pseudo-potential coefficients Va,, Vae, Vi...of the semiconductors involved. This
basically corresponds to a difference in the shape and depth of the potential wells
corresponding to chemical bonds on both sides. (ii) There is a constant potential
offset AV, between the two materials, which includes the difference of average po-
tential of the (supposedly spatially separated) materials and the charge transfer,
essentially limited to the interface bonds, which produces an electrostatic potential
step at the interface. When using bulk empirical pseudo-potentials, this constant
offset needs to be adjusted by hand since it is not directly a bulk property of each
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material but rather a characteristic of the interface. We note that the interface
charge transfer has the Cy, symmetry, hence it should also include a quadrupo-
lar contribution. In the empirical pseudo-potential picture, the charge transfer
ensures (to the first order of perturbation) the continuity of the 3-dimensional
microscopic potential. In practice, we shall neglect the quadrupolar contribution.
In this description, the microscopic potential V(7) takes the value Vgaas(r) when
r lies closer to a GaAs bond and Valas(r) + AVp when 7 lies closer to an AlAs
bond. One should note at this point that the microscopic potential proposed here
is different from the microscopic potential used in most pseudo-potential calcula-
tions: the potential is associated with the closest chemical bond rather than to a
combination of different atomic pseudo-potentials. We introduce the function

AV('I’) = Vajas(r) — VGaAs('l“) + AV, : (3)

which has the full Ty symmetry of the bulk crystal (we neglect here the small
difference in bulk lattice constants). AV(r) contains all the information on the
change of microscopic potential between the two bulk materials. Therefore, the
microscopic potential in the interface cell can be written as

V(r) = Vgaas(r) + a(r)AV(r), (4)
where a(r) describes how the microscopic potential changes in the interface cell: in
other words, it partitions the interface cell into GaAs-like and AlAs-like regions,
with the correct Cg, symmetry. As long as the “bond potential well” picture
discussed in the previous section prevails, what matters is that a(r) & 0 close
to the potential wells associated with the backward bonds and «(r) = 1 close to
the potential wells associated with the forward bonds. Clearly, the unidimensional
step function Y(z) is rather a poor approximation of a(r). The “waffle” step
function Wi(r) introduced by Foreman [5] and illustrated in Fig. 5a is obviously a
much better approximation, and a smoother function Ws(r) following the maxima
of the pseudo-potential as illustrated in Fig. 5b, an even better approximation
of the actual function a(7). We now have to estimate the splitting of the states
of symmetry X’ and Y’ associated with the Cs, symmetry of the interface cell,
namely:

(X'|a(r)AV(r)|X) = (Y']e(r) AV (r)]Y), ()
where the integration is performed over the interface unit cell. Note that this
splitting corresponds to twice the X-Y interface coupling (X|a(r)AV(7)[Y) that
we previously evaluated in the Hpp model [3], since XY = (1/2)(X'2 —Y"?). A
fully numerical evaluation of this matrix element has already been attempted,
but it essentially relies on our capacity to describe correctly the difference of
pseudo-potential coefficients AV, AVas, AVz, ... between AlAs and GaAs with a
precision of the order of 10 meV, which seems extremely optimistic if one compares
the pseudo-potential coefficients obtained in the literature for these materials. In
the following, we propose a way to link the spatially dependent function AV(r)
with effective parameters such as the band offsets AE, used in the classical enve-
lope function theory, and therefore simplify these matrix elements.

It follows from the “bond potential well” picture that the X’ function en-
tering the expression (5) is similar to the X’ function of bulk GaAs and the Y
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Fig. 5. Two kinds of “waffle” surfaces used in the calculation of the matrix elements
to separate properly the backward and forward half-cells.

function close to that of bulk AlAs. We remind that the general features of these

functions depend very little on the material. Also, if the localization of the micro-

scopic function in the corresponding potential wells is strong enough, a(r) is close

to zero in the region where Y’ is non-vanishing, and close to 1 in the region where

X' is non-vanishing. Within these approximations, which are discussed numeri-

cally in the following, the splitting approximates to (X’|AV(r)|X’), which will be

shown to be the valence band offset between the two materials. The correctness of
this result is linked to the degree of localization of the X’ and Y functions with

respect to the step change of the microscopic potential, and to the validity of this

potential. In order to check this, we have calculated the degree of localization of
the pseudo-potential functions in a bulk GaAs unit cell. In the following, all nu-

merical values are based on the pseudo-potential form factors from Ref. [10]. We

obtain a strong localization of the Bloch functions: 65% of the charge of the X’
state is in the upper half-cell when partitioning the cell with a step function Y (2),

but the figure becomes 88% when using the “waffle” step function W(r) between

each half-monolayer. Therefore,

(X'|ea(r)| X'y ~ (X'| XYy =1 hence (X’Ia(f)AV(T)IX') ~ (X'|AV(r)|X'), (6a)
(Y'|a(r)[Y') = 0 hence (Y'|a(r)AV(7)[Y’) = 0. (6b)
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We now need to define properly the valence band offset between the two ma-
terials from a microscopic point of view, and to link it to the matrix element
(X'|AV(r)]X’). Let us consider two bulk unit cells of GaAs and AlAs far from
the interface. They are described by two Hamiltonians which differ only by the
potential AV(r) introduced previously

HAlAs — HGaAs-I-AV(’P). (7)

The band offset is the difference of energy of the zone center (k = 0) Bloch states of
these two Hamiltonians. If the Bloch functions change very little from one material
to the other, a first order perturbation will directly give the difference of energy
between the Bloch states in AlAs and GaAs

ENAs = ESeAs | AE, x ES*A% 4 (X|AV(7)|X), (8a)
EAAs = ESaAs 4 AE, ~ ES* 4+ (S|AV(r)]S). (8b)

In order to check numerically this general result, we first need to adjust the con-
stant coefficient AV, in (3) to reproduce correctly the valence band offset. By
setting AVp = —0.12 eV and diagonalizing separately the two Hamiltonians, we
can reproduce the physical offset AF, = —0.562 eV, which lies within 10% of
the first order approximation (X|AV(r)|X) = —0.525 eV, where the function X
used is the Bloch state of bulk GaAs.Intuitively, we can say that the band offset
viewed by a given Bloch state | X) is the average value of the microscopic function
AV(r)in the region where |X) has its maximum of density. Combining the previ-
ous results, we can conclude that the energy splitting between X’ and Y’ states
over an interface cell is the valence band offset, which is exactly the result first
predicted in the Hpp formalism using projection operators [3]

(X'Na(nAV(R)|X') = (Y |a(r)AV(7)|Y') = AE,. (9)

One can easily compare the above result with a fully numerical evaluation of the
above matrix elements, using bulk GaAs Bloch states and expanding the function
a(r)AV(r) in the special case of a waffle interface. It yields a splitting of 0.511 eV,
in close agreement with the valence band offset. The crucial point is that even
this fully numerical computation requires first to adjust properly the constant
coefficient AVy. We can conclude that in a non self-consistent approach, the X’'—Y"
splitting is essentially governed by the valence band offset at the interface, and not
by the microscopic details of the change of potential between the two materials. Of
course, the splitting might be reduced in the case of a smoothed interface potential,
but this main feature will remain.

4. Interface induced X —Y mixing: the role of the envelope functions

In order to fully understand the role of the interfaces on the X—Y band
mixing in more realistic situations, we shall consider now whole AlAs-GaAs based
heterostructures, where bound states will be described by usual envelope functions.
Similarly to the previous section, we now define a generalized step-function a(r)
over the whole structure in order to write correctly the microscopic potential.
More precisely, « is equal to 1 (resp. 0) inside each half-monolayer representing a
plane of AlAs (resp. GaAs) chemical bonds, with discontinuities along waffle-like
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interfaces. Moreover, it is particularly interesting to consider an electric field F
applied along z (specifically in the case of common atom systems) since it modifies
the shape of the envelope function and therefore may act onto the interface induced
mixing [12]. For this reason, we shall consider the general microscopic potential
V(7) = Vgaas(r) + eFz + a(r)AV(r) (10)
and focus our attention on the states corresponding to ki = (kg,ky) = 0. As
already mentioned, the Bloch functions change very little between two III-V ma-
terials, although the energy gaps and therefore the effective masses can be very
different. The method used is to start from an envelope function theory in which
we neglect the coupling introduced by a(r)AV () between states of opposite sym-
metries such as X and Y, treating it later as a perturbation. This Hamiltonian
can be diagonalized by block in each subspace of symmetry X, Y or combinations
of Z and S (because of the k- p coupling between these states). This problem was
solved long ago in the framework of the classical envelope function theory. The
upper valence states, we are interested in, are essentially of the form £, X,, f,Y,
where the {f,} are different envelope functions, plus a small contribution from
higher X, and Y, bands of no interest here. The envelopes above already include
the effect of the electric field. At this point, one should notice that a careful treat-
ment yields exactly the same envelope functions {f,} for both X and Y symme-
tries. We shall now introduce the X ~Y coupling as a perturbation on the previous
basis, that is evaluate the matrix elements
Ay = ([ X|a(PAV(n)|fY), (11)
where the integration is performed over the whole crystal. In order to get some
physical insight on this rather complicated function, we make use, as in the pre-
vious section, of the fact that XY = (1/2)(X'?2 — Y'2). Then, using appropriate
(waflle-like) interfaces we partition the crystal in a stack of monolayers where the

regions of space closer to a forward bond are well separated from those closer to a
backward bond. It allows us to decompose (11) as

XY—Z {HX | aAVIf, X Yw, = (Y |aAV]£Y)w,) - (12)

where the summatlon runs over the successive monolayers indexed by z;, which
can be chosen as the coordinates either of the anionic or of the cationic planes.
The matrix elements in (12) with subscript “W;” are calculated over these mono-
layers centered on z;. Due to the localization properties of the X’ and Y’ states
discussed in Sec. 2, each term of (12) can be seen as the valence band poten-
tial averaged respectively over the forward (X’-terms) and backward (Y’-terms)
bonds and weighted by the product of the envelope functions. This is precisely the
intuitive idea which had been developed through the original Hgr model [3]. Now
we will use the fact that the envelope functions vary slowly at the scale of the
monolayers, so they can be factorized from each matrix element. However, we also
have to keep in mind that they must be evaluated at different positions inside the
same monolayer, depending on the average position of X’2 or Y’2. Without this
precaution, it would appear some theoretical inconsistency related to the choice
of anion-centered or cation-centered monolayers [13, 14]. For simplicity, we can
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assume quasi-germanium Bloch functions, and take the value of the envelopes at
the center of each chemical bond, i.e. at z + a/8. This approximation mainly ne-
glects the bulk inversion asymmetry (BIA) which actually does not affect much
the shape of X’ or Y’ as previously discussed. We then obtain the following;:

a
D8y = 30 2 (o Fsctass(XNaAVIX Y, = (fy fo)sioars (Y I0AVIV ], (13)
where the factor a/ 2 has been introduced, because of the normalization of X’ and
Y’ states over a/2-thick monolayers, and of the envelope functions*. Taking into
account the results of Sec. 3 and the properties of the function «, Eq. (13) can be
simplified to

a

’ AI}(qY = ZAEU Z [(afpfq)z,-+a/8 - (O‘fpfq)z;—a/S] . (14)

Because of the sign reversal between forward (z; + a/8) and backward (z; — a/8)
bonds, each term of the sum essentially cancels its appropriate neighbor, except for
the small changes of the envelope function weights or the potential discontinuities.
By developing the envelope functions at the first order in (a/4)8(f,f;)/0z and
assuming that they vanish for large |z| in AlAs barriers, one finally gets

a i
Alsgy = 'gAEv Z(—l) <a'z§+a/8 - azﬁ—als) fp(zz,)fQ(zz,) (15)

Now the summation runs over all the successive atomic planes which are indexed
by zb,_; = 2z and 25, = z; + a/4. This expression shows that the X—Y mix-
ing term is the alternated sum of all the discontinuities between half-monolayers
weighted by the values of the envelope functions. The sign dependence (—1) which
appears in (15) can be seen as the effect of opposite symmetry breakdowns localized
either on anionic or cationic planes. It can be noticed that taking into account
the first-order envelope function variations has resulted in a factor 1/2, which
represents the main difference with the original Hgr model [3]. Thanks to this
improvement, the model is no longer dependent on the choice of the cells used to
partition the crystalt. Moreover, in the case we are considering here, it is clear
that all the discontinuities occur on As planes, since the bonds on both sides of an
Al or Ga plane are necessarily equivalent (i.e. As—Al-As or As-Ga~As). It follows
that the general expression (15) reduces to the sum over theses anionic planes, for
which the factor (—1)¢ is constant and can then be omitted.

In order to get a first application of this result, let us consider a single
AlAs-GaAs QW. It presents only two discontinuities (@, ta/s8 — @zp—a/8 =
—(@zn+4a/8 — Qzn—as8) = 1), respectively situated on the As plane of the left
(z1,) and right (zr) interface. The X —Y mixing becomes

ARy = SAL, [f(z1)fy(zn) = fo(2R) folam)]. » (16)

*We suppose that the envelope functions are normalized according to f fg (2)dz = 1.

tThere is still arbitrariness in associating the X' state to the forward bonds (i.e. bonds from
anion to cation in the z direction) since in Dy4 symmetry the directions [110] and [110] cannot
be distinguished. It means that the matrix elements Ag(qy have not an absolute sign, but making
the opposite choice would suppose to have rotated the z,y axes by n/2. :
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It shows that in the case of a perfect common atom quantum well under zero
electric field, for which the envelope functions are either even or odd, there is an
exact compensation of the two interfaces for the states of the same symmetry. The
interface coupling is non-zero only for states of opposite parity, which is consistent
with the Dy symmetry of such a system. In theory, an AlAs-GaAs quantum
well cannot present optical anisotropy unless the roto-inversion symmetry of the
structure is broken by an external perturbation like an electric field F' applied
along the growth direction z. However, there is no direct coupling between |f,X)
and |f,Y) induced by such a field. This result is obviously expected in the quasi-Ge
approximation and remains actually valid when we include some ionicity in the
localization properties of the Bloch functions. In order to check that point, we first
use the expression (14) with e F'z instead of « AV, where the values of the function
zfp fq are now taken at the positions z; & a/8 shifted by +6 in order to include the
slight deformation of the Bloch functions X’ and Y’ toward the anions As. Since
the function zf, f; vanishes rapidly inside the barriers, we obtain

(fyXleFzlfyy) = 52 §2 1y 8bef) ) 4 05 57 Ay 0. )

The first term in (17) corresponds to the quasi-Ge treatment of eFz. It
consists like (15) in an alternated sum over the cationic and anionic planes which
experience the difference of average potential e F'a/4 between successive bonds, and
approximates to zero at the first order in a/L (where L is the typical extension of
the envelopes). The second term which is linear in § represents the contribution of
the ionicity of the Bloch functions (due to the BIA) and vanishes to the first order
in 6§/a. As a result, the valence band mixing which can be generated in that
case comes only from the deformation of the envelopes by the electric field which
changes the respective weights of the interface contributions in (16). It gives rise to
a completely original electro-optic effect known as the “quantum confined Pockels
effect” (QCPE) [12], first observed by Kwok et al. [15] in electro-luminescence ex-
periments. Although there is also a BIA contribution to the Pockels effect through
the k, dependence of the optical matrix element [16], a remarkable feature of the
QCPE is that it does not rely on the inversion asymmetry of the bulk crystal,
and would be observable in QWs made out of centrosymmetric hosts like Ge and
Si. The concepts introduced in this section to calculate the matrix elements A%,
and specifically the expression (15) are very general and will be extended to the
non-common atom interfaces and to the coupling between heavy and light holes.

5. The case of interfaces between hosts having non-common atom

As first pointed out in Ref. [3], the physics involved in the description of NCA
interfaces (a situation encountered in the technologically important InAs-GaSh
and (InGa)As-InP systems) shows striking differences with the case of common
anion interfaces: in NCA systems, the interfaces involve specific chemical bonds
which do not exist in either of the hosts, and in general, the specific bonds formed
at the first and second interfaces of a quantum well differ, so that, even in absence
of external electric field, the QW retains the low symmetry of a single interface.
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In addition, these interface bonds usually undergo considerable strain. We shall
consider as an example in this section an interface between InAs and GaSb having
the following sequence: ...-In-As-Ga-Sb... Although InAs and GaSb are almost
lattice-matched, the structure contains a highly strained half-monolayer composed
of As-Ga chemical bonds, all lying in the same plane, say ¥ = 0. Obviously, the
potential wells associated with these bonds differ from the neighboring “bulk-like”
potential wells by their native pseudo-potential coefficients, and by the effect of
strain. As found numerically in ab-initio calculations [8], the latter effect is prob-
ably the dominating one. It can be understood in terms of the kinetic energies of
the different valence states. In the present example, the As-Ga half-monolayer ex-
periences a 15% tensile strain along the z’ axis. Let us formally consider the effect
of such a deformation £ on the Bloch states of a unit cell of bulk GaAs experi-
encing the same strain. The characteristic variation length dx of Bloch functions
along z’ depends linearly on the strain, therefore the kinetic energy contribution
along this direction shall be reduced by 30%. Since the valence state of symmetry
X' has a node in the plane &' = 0, most of its kinetic energy is due to the z’
contribution, unlike the states Y/ or Z (the latter being mixed with S states by
this uniaxial strain). The total kinetic energy of unstrained GaAs valence states
calculated by pseudo-potentials being of 16 eV, we can expect the X’ state kinetic
energy to be shifted typically by an amount of —3 eV with respect to unstrained
bulk GaAs. Of course, this huge effect is compensated in part by charge transfers
and by the associated compressive strain along the z direction, but it is clear that
it contributes by an enormous amount to the X’—Y" energy splitting.

We shall not attempt here to guess an approximate geometry and micro-
scopic potential V(7) at the interface to compute the splitting between X’ and
Y’ but rather show how effective parameters can be introduced to characterize an
interface. Following the ideas of Sec. 3, we can define an average valence potential
for the states of symmetry X’ in this half-monolayer by taking the matrix element
Vaaas = (X'|V(7)]|X’)1/2cen Over the region of space closer to the GaAs bonds,
that is in practice between two waflle interfaces. The Bloch state X’ formally used
in this matrix element is similar to the Bloch states of InAs and GaSb since their
geometrical features are essentially governed by the length of the chemical bond
along z’ which is imposed by the substrate, the direction z having only a very
secondary effect here. One should note at this point that although we may get
a physical idea of the shape of the bond quantum wells associated to the GaAs
half-monolayer, that is the pseudo-potential coefficients of the strained bond, we
have no mean to fit properly the constant AVp in this part of the crystal since
it cannot be adjusted with an experimental band offset. Hence, evaluating this
potential is absolutely impossible without performing detailed self-consistent cal-
culation because of the large charge transfer effects and the modifications of energy
levels due to the strain. Therefore, we shall consider it as a characteristic of the
interface, to be matched with experiments. ‘

A single NCA interface can be viewed as two consecutive common anion
and common cation interfaces with opposite orientations. There is therefore two
potential discontinuities at the positions zj,; & a/8, which contribute to A%l with
an opposite sign (see Eq. (15)) yielding a X—Y coupling of the following form:
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Ay = (HLXIV(DIfY) =
2 Fo(int o (2ine) [(Vins — Vaas) = (Vaaas = Vaas)]. (18)

The interface mixing is proportional to the difference of valence band offset of
the two consecutive virtual common atom interfaces, Vinas and Vgasp being the
valence band potential in the two bulk materials. Since the high interface strain
can move the X’ valence energy level Vigaas far from the valence energies of both
InAs and GaSb, we can expect this interface coupling to be much larger than in
the case of a simple common atom interface, and, of course, to depend drastically
on the growth sequence. Instead of using the average values of the valence energy
of each half-monolayer, it makes sense to write the X —Y mixing in terms of the
two parameters dVins = Vinas — Vgaas and AFE, = Vgasb — Vinas, where dVip has
to be fitted to experimental data and AE, is the valence band offset. Hence

AI)’gY = %fp(zint)fq(zint)(2dvint + AEU). (19)

Experimentally, in the case of (InGa)As-InP quantum wells [17], the typical order
of magnitude for these interface potentials is dVip; & 1 €V, which leads to matrix
elements of a few meV. This means that in the zero spin—orbit limit, the optical
absorption spectra of such heterostructures should show a polarization dependent
optical gap. As we shall now point out, this effect is strongly modified by the large
mixing of valence states due to the spin-orbit coupling.

6. Introduction of the spin—orbit coupling and calculation
of optical spectra

Although the analysis of symmetry breakdown that we have discussed above
describes correctly the microscopic effect of interfaces, it misses the introduction
of spin—orbit coupling effects. The matrix elements due to the interface symme-
try breakdown (a few meVs) are about two orders of magnitude smaller than the
spin-orbit coupling constant (a few hundred meVs). Therefore, spin-orbit inter-
action cannot be treated as a perturbation over the states of symmetry X/, Y/,
and Z. Instead, the interface effect can be conveniently treated as a perturbation in
the traditional heavy and light hole basis that diagonalizes the spin—orbit interac-
tion. The top valence band zone center states of a bulk material: H+, Lt, H—, L~
are expressed as combinations of X, Y, and Z Bloch states with appropriate spins,
for example

1 1
) 7
Following the procedure of Sec. 4, we can diagonalize the Hamiltonian H = F, +
V(7) + Hs.o. in each symmetry block (with the appropriate conduction bands to
take into account the k-p coupling) and then treat the inter-block matrix elements
as first order perturbations. This means that we need to evaluate matrix elements
between states which are essentially of the form |fg, H*) and |fz L™}, plus small
contributions from higher zone center states essentially negligible in the context
of interface couplings. If we develop the Bloch function part of the matrix element
Mgyp- = (fa, H*|V(r)|fr,L~), the only non-vanishing contribution will be of

Ht = —=(X+iY)1, L~ =-—=(X-iY)1- ng- (20)
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the form i/ V3(X|V(r)|Y), which means that the heavy-light hole coupling is
directly proportional to the X—Y coupling calculated with appropriate envelope
functions. In the case of a single non-common atom interface, we simply get

M, = ig%fH,(zina)qu(Zint) (20Vint + AE,). (21)

'The optical selection rules associated with heavy and light holes yield a specific
polarization for each transition. The most striking effect in the case of non-common
atom QW is the strong Hi—L; coupling arising from the different potentials at
successive interfaces. A first order calculation gives the polarization rate at kj = 0
of the transition H;—F;

_ ®max —@min _ 2 Mg,

P= Qmax + Qmin - \/E(Ll _Hl)’ (22)
where the matrix element M H,L, is understood to be the sum of the contributions
of the two interfaces. Because of sum rules, this polarization becomes almost zero
at energies above the L;—F) transition. It is interesting to note that the spectral
width of the effect is fixed by the different confinement of heavy and light holes,
while its magnitude depends on the weight of envelope functions at the interface,
and specific properties of these interfaces. A detailed calculation of the optical
spectra can be achieved by introducing the matrix elements My, in a Luttinger
Hamiltonian, yielding the correct mixing of states at any kj , as well as a realistic
energy dispersion for each band. It is interesting to notice that although Hamil-
tonian contains linear in k; terms between light holes and heavy holes they do
not contribute to the anisotropy when we sum over the different in plane wave
vectors.” The optical polarization computed for each transition is essentially the
same as its value at k) = 0. Therefore, a simplified model such as the diagonal
approximation of the valence band dispersion can be used to calculate realistic
absorption spectra. This approximation is used in the following section.

7. QW anisotropy: a non destructive interface characterization

The main difference between real and ideal quantum wells is that the former
do not have nominal growth sequences because of atom exchange and segregation
mechanisms, composition overshoots due to transients, etc...Even in the case
of the most studied systems, GaAs-AlGaAs, it has been shown that interfaces
rather have an exponential “relaxation” profile rather than a composition discon-
tinuity [17, 18}. This implies that even nominally square, common anion QWs
may actually show a small optical anisotropy associated with slightly asymmetric
composition profile. Conversely, if anion exchange during the growth interruption
which is required to commute four chemical species in any epitaxial system is highly
asymmetric, the symmetry of a NCA QW may be of the D4 type! For instance,
let suppose that the anion A1 is much more stable than A2: one may program the
nominal growth sequence C1-A1-C2-A2—(---)—C2-A2-C1-A1l, and actually get
the symmetrical sequence C1-A1-C2-A2—(.--)—C2-A1-C1-Al because the last
plane of A2 has been replaced by a plane of Al before the growth starts again.
Polarization resolved spectroscopy associated with proper modeling is a valuable
spectroscopic tool to elucidate these phenomena. In general, zero electric field data
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contain the information on the sum of the interface effects, and must be completed
with the study of the quantum confined Pockels effect which allows discrimination
of the two interface contributions. Needless to mention that polarization-resolved
spectroscopy is the subject to many artefacts, especially when searching for polar-
ization rates of the order of 1%. A conventional set-up with careful data analysis
gives a typical 0.5% limit, which can be improved by, at least, one order of mag-
nitude by using polarization modulation.

We illustrate these trends with results obtained in the (InGa)As-InP system
which is of special importance because this is the key material for opto-electronics
at 1.55 pum. Photocurrent spectroscopy is a nearly ideal tool in this case. Fig-
ure 6 compares the polarization spectra obtained from transmission spectroscopy
at 77 K in (InGa)As—(Alln)As and (InGa)As-InP QWs having similar quality and
similar parameters (nominal well width of 100 A). The former sample shows nearly
isotropic properties, while the latter shows a “giant” dichroism corresponding to an
absorption polarization rate of 10% between the H1—F; and L;—FE; transitions.
Corresponding calculations are also shown. The results in (InGa)As-InP QW im-
ply strongly asymmetric interface potentials. A more detailed insight is obtained
from the analysis of the QCPE. The polarization spectra at various applied electric
fields are shown in Fig. 7, together with the corresponding band-to-band calcula-

(Galn)As-InP

HE, (Galn)As-(AlIn)As
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Fig. 6. Polarization-resolved absorption spectra (obtained from transmission spec-
troscopy at 77 K) in nominally 100 A-thick (Galn)As-InP (left) and (Galn)As—(Alln)As
(right) QW. The former shows a strong in-plane anisotropy in the spectral range be-
tween the H1~F; and L;—E; transitions, while the latter shows essentially isotropic
properties. Displayed polarizations are along the [110] and [110] directions, respectively
(continuous and dashed lines). The calculated band-to-band spectra (shifted by an ar-
bitrary 7 meV to account for exciton binding energy) are also shown.
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Fig. 7. Electrical field depéndency of the absorption polarization rate in the
(InGa)As-InP QW of Fig. 6, showing the phenomenology of the “quantum confined
Pockels effect”. Theoretical curves have been smoothed with a 5 meV width Gaus-
sian and slightly red-shifted for a better comparison with the excitonic contribution.
The main discrepancy, which occurs in the L; —E; spectral region, is attributed to the
strong coupling between H2—FE7 and Lj—F; excitons which are not taken into account
in the model.

tions. The agreement is essentially satisfactory, although the calculation does not
include excitons, which obviously contribute to the low temperature spectra in
these high quality samples. Excitonic effects influence the QCPE in particular in
the vicinity of the Hy— FE) transition [19]. The dependency of the polarization rate
on the well width is illustrated in Fig. 8. Calculations use a similar set of interface
potentials for the three samples. (dV1, & 1.3 eV, dVg =~ 0.1 eV). These two values
have been obtained by fitting the QCPE data. It is finally interesting to compare
samples obtained with different growth techniques. In particular, the growth in-
terruption times are in general longer in the case of an ultra-vacuum technique
like conventional MBE or gas-source MBE than in atmospheric pressure MOCVD.
We show in Fig. 9 the QCPE data obtained in a top-quality (InGa)As-InP quan-
tum well grown by gas-source (GS)-MBE. Nearly zero polarization is observed in
flat-band conditions, which indicates that the interfaces are almost symmetrical.
Yet, in presence of an electric field, a large polarization appears which implies
an interface potential much larger than the band offset. Similar GaAs—-AlGaAs
or GalnAs—AllnAs wells show nearly no polarization under equivalent polariza-
tions. This indicates that NCA QWs do have specific interface properties, but one
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Fig. 8. Polarization- resolved absorption spectra at 77 K for two MOCVD-grown

(InGa)As-InP QWs showing the well-width dependency of the optical anisotropy. The
dashed lines represent the corresponding calculations using a common set of “interface
potentials” (dVi, = 1.3 eV, dVk = 0.1 V). Discrepancy in the vicinity of the Li—E;
transition is attributed to excitonic effect [19].
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Fig. 9. QCPE-spectra of a 99 A-thick (InGa)As-InP QW grown by gas-source MBE.

The zero-field anisotropy is weak (D24 symmetry presumably induced by anion ex-
change), but the large Pockels effect (specifically in the L;—E; region where it is en-
hanced by the excitonic effect) indicates large interface potentials in this NCA system.
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can :act on the overall symmetry of the quantum well with the growth procedure.
Equivalent trends have recently been reported in the case of BeTe-ZnSe type-II
QWs [20, 21].

8. The effect of chemical intermixing

Another issue of interest is the role of interface sharpness. We shall discuss
first the case of common atom (CA) quantum wells defined by a smooth cation
composition profile associated with a valence potential V(z). The physical effect
of such a profile is fundamentaﬁy different from the effect of an external electric
field. From a microscopic point of view, such a valence potential can be represented
by steps occurring at each anion plane, while an external field is associated with
valence potential steps occurring both at each anion and cation plane. In the first
case, the effect of each step in terms of H—L coupling adds up at each ‘interface’,
while in the former, anionic and cationic potential steps cancel each other because
of their opposite orientations (see Eq. (17)). Still, because the envelope functions
depend on the valence band profile, a QW with two interfaces of different profiles
shall retain a Cy, symmetry, but the changes in terms of H—L coupling are rather
small. The corresponding matrix element can be evaluated easily with the following
formula:

. a oV
M, z,= iz / ity fry . (23)

Again, this formula differs from Eq. (2) of Ref. [3] by a mere factor 2, and the
present result does not depend on the choice of unit cell. Obviously, as long as the
symmetry of the QW is preserved, no anisotropy is generated. However, in case
of segregation profiles which are by construction smooth and asymmetrical, some
zero-field anisotropy becomes observable. Numerical estimates for a 100 A-thick
GalnAs—AlInAs QW indicate polarization rates in the 1% range, which are within
reach of careful experiments. Hence, polarization-resolved spectroscopy has a very
good potential for the non-destructive characterization of buried semiconductor
interfaces. ' ,

The problem of chemical intermixing of NCA interfaces is rather more diffi-
cult to treat because of the separate profiles of the anion and cation composition,
and their consequences in terms of local strain. As pointed out earlier in this
paper, the essential feature that characterizes a NCA interface is its effective se-
quence, that is the order in which the anion and cation are changed. This feature
remains true in the case of non abrupt interfaces, but a rigorous description of
H—L coupling at difftused NCA interfaces is still a challenge.

9. A parameter free calculation: the interface induced
H,—L; anti-crossing

In a common atom quantum well such as GaAs-Al,Ga;_zAs, states with
opposite symmetry are coupled even at zero electric field. The interesting point
is that such interface couplings can be directly evaluated from the above model
(see Eq. (16)) without any adjustable parameter. In the classical envelope function
theory, the confinement energies of the H» and L valence states cross for a given
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well width. This accidental degeneracy is lifted by two separate effects of lowering
symmetry; the interface coupling (roto-inversion symmetry breakdown) and the
bulk inversion asymmetry, which yields linear in k, terms between heavy and light
holes [22]. Since the bulk inversion asymmetry couples only envelopes of opposite
parity, it yields no optical anisotropy, but contributes to the anti-crossing between
H, and L;. The latter coupling has been evaluated by several authors in the
literature (it amounts to 0.05 meV*), while the former has been omitted by most
k- p calculations up to now. We have computed the interface induced anti-crossings
at two separate compositions of Al, x = 0.25 and & = 1. The confinement energies
as well as the weight of the envelope functions at the interface were evaluated
using a four-band envelope function model including spin—orbit. The valence band
offset has been taken to be 40% of the total band gap difference between well and
barrier. We obtain respectively an anti-crossings of 0.15 meV and 0.20 meV at
very similar well width (180 A). Empirical pseudo-potential calculations including
spin—orbit coupling give actually similar results [23]. One could be surprised that
the effect has only a weak dependence on the composition of the barrier, since the
matrix element is directly proportional to the valence band offset. This is actually
due to the fact that the weight of the envelope functions at the interface drops
when the valence band offset is increased, because of the increased confinement
of the holes. Therefore, multiplying the valence band offset by four changes the
anti-crossing height by only mere 30%.

10. Conclusion

We have discussed recent developments of the physics of rotational symmetry
breakdown at semiconductor interfaces, which has quantitatively important influ-
ence on the optical properties of non-common atom quantum wells. The present
approach brings support (and also, correction of some mistakes) to the heuristic
Hpr model that we proposed in 1996. The new theory bridges the gap between
the atomistic theory based on empirical pseudo-potentials and the user-friendly
envelope-function approach. Fully ab-initio calculations are certainly required to
determine theoretically the interface potentials, especially in the case of NCA in-
terfaces, but effective parameters obtained by fitting experimental data can be
used for a reliable engineering of anisotropy properties. This recently discovered
topic has brought in a critical reexamination of the classical envelope function the-
ory of semiconductor heterostructures which, by construction, misses the intra-cell
effect of the composition discontinuity. A completely new linear electro-optical phe-
nomenon, the quantum confined Pockels effect results from the reduced symmetry
of interfaces and contributes to a novel type of non-destructive experimental inves-
tigation of semiconductor interfaces, based on polarization-resolved spectroscopy.
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