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In this study the technique of Laplace transform (high resolution) deep
level transient spectroscopy combined with the uniaxial stress method has
been used to study a symmetry and the defect reconfiguration kinetics (the
stress induced alignment) of some forms of hydrogen-related centres. We
have confirmed the trigonal symmetry of the defect related to the isolated
bond centred hydrogen. When hydrogen decorates the vacancy-oxygen pair
(the A centre) the apparent defect orthorhombic symmetry is not lowered
as a result of a very high hydrogen jumping rate between two unsaturated
broken bonds of the vacancy. We also show that the stress-induced defect
alignment in some cases can be related to the same microscopic mechanism
of the hydrogen motion as it is for the diffusion process.

PACS numbers: 68.55.Ln, 71.55.Cn, 73.40.Lq

Hydrogen in silicon may influence the material electrical characteristics
through interactions with intrinsic defects, native impurities, and shallow donors
or acceptors. This feature of hydrogen has important technological as well as fun-
damental aspects. For a longer time hydrogen has been studied extensively with
a number of experimental and theoretical methods [1]. The structure of isolated
hydrogen in crystalline silicon has been calculated by several groups [2, 3] and
a general consensus has been reached that hydrogen in silicon can exist in three
charge states: H+, H0, and H - . This impurity in the first two states is stable in the
bond centred (BC) position, in the latter one in the interstitial tetrahedral site.
Recently, it has been shown that two kinds of BC hydrogen donors exist and both
of them can be only observed after proton implantation at low temperatures [4].
One is associated with the isolated hydrogen at the BC site, the other one with the
BC hydrogen weakly perturbed by an interstitial oxygen. For temperatures above
240 K both forms of the defects disappear as the hydrogen atoms can migrate and
create more stable complexes, e.g., with the vacancy-oxygen pair or carbon.

In this study the microscopic structure of different forms of hydrogen-related
defects have been investigated with the use of the high resolution Laplace deep
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level transient spectroscopy (DLTS) method [5] combined with the uniaxial stress.
For the defects, or defect complexes, having the local symmetry lower than the
Td symmetry the uniaxial stress affects the defect electronic level in a different
way depending on the defect spatial orientation in respect to the stress. This
effect results in a splitting of the defect electronic level. The DLTS technique
investigates the process of the thermal emission of carriers bound by defects. The
lifting of the defect spatial degeneracy can be only seen in this process when the
defect reorientation rate is much slower than the thermal emission rate, otherwise
the defect non-equivalent orientations are well averaged by the defect rotation and
an average energy level is seen.

When the defect of a given symmetry is stressed along one of the major
crystallographic directions ((100), (110) or (111)) then the Laplace DLTS line can
split and a number of split components can be related to the defect microscopic
structure. For example, a defect with the C3, local symmetry should reveal no
splitting of the Laplace DLTS line when the sample is stressed in the (100) di-
rection, however this line should split into two lines with the amplitude ratios
1:1 or 3:1, when the stress is applied in the (110) or (111) direction, respectively.
Although the number of split lines and the amplitude ratios are unique for the
defect symmetry, the line separation and their stress coefficients should be related
to details of the defect bond structure. In general, the Laplace DLTS technique
allows one to observe much smaller modifications of the thermal emission process
induced by the stress than it is possible for the conventional DLTS method. Usu-
ally, a difference in the emission rate by a factor of 2 or more is sufficient to see
the spectral lines splitting.

When the thermal emission process occurs at the uniaxial stress it means
that both, i.e. the initial and final, states of the process are modified by the stress.
On the other hand, the thermal excitation of a carrier does not comply with
any of selection rules, thus the final state of the process does not preserve any
memory of the initial state symmetry. As a result, the symmetry of the final state
is practically unknown and should be the same for all initial states. The final state
of the process is seen in the experiment as stress-modified density of states of the
conduction/valence band.

The samples used for one set of measurements have been cut from the same
1 mm-thick wafer of Czochralski grown n-type silicon with the (110) surface orien-
tation. This surface orientation allows one to prepare from the same crystal a set of
stress-samples where the stress can be applied along three major crystallographic
directions. For the isolated hydrogen studies the Schottky diodes were implanted
with protons through the diode junction into the substrate at low temperature
(around 60 K). Test samples implanted with helium have been also prepared at
equivalent (low) damage loads in order to distinguish between hydrogen-specific
levels and intrinsic levels caused by the ion-beam damage. The implantation doses
for the measurement and test samples were chosen to generate the same number
of primary vacancies at the end of the range of the ions. For the studies of the
hydrogen-related complexes • the implantation was carried out at room tempera-
ture. These samples were compared with the reference samples irradiated with
electrons. For all the samples the implantation energies were chosen so that the
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range matched the middle of the depletion layer at convenient for measurement
reverse biases.

Figure 1 shows a series of the Łaplace DLTS spectra taken at different
uniaxial stresses applied along the (111) direction to the Si(n) Cz sample. This signal

appeared after proton implantation and has been previously unambiguously iden-
tified as being due to the donor level of the BC isolated hydrogen (the E3' level of
H(BC)). The implantation procedure and the electronic level identification have
been described in Ref. [4] in details. The subsequent spectra have been measured
in 0.05 GPa steps of stress and the vertical shift of a baseline is proportional
to the stress. It is clearly seen that for this stress direction the Laplace DLTS
peak splits into two components having the amplitude ratio equal to 3:1. In the
0.5 GPa spectrum the most right hand side peak does not belong to the H(BC)
centre but it is a split-partner of the broad line seen on the left hand side of the

Fig. 1. The Laplace DLTS spectra taken at different uniaxial stresses applied along the
(111) direction to the Si(n) Cz sample. This signal appears after proton implantation
and has been previously unambiguously identified as being due to the donor level of the
bond-centred isolated hydrogen. The vertical shift of a baseline is proportional to the
stress.
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Fig. 2. The effect of the uniaxial stress on the Laplace DLTS spectrum of the isolated
bond centred hydrogen (the E3' donor state) for different stress directions.

0.05 GPa spectrum. This peak we associate to the presence of the A centre (the
vacancy-oxygen complex), which is observed in our samples with a much lower
than H(BC) concentration. The A centre line splits under the stress with much
larger stress coefficients than H(BC) so its partner appears on the spectrum on
the other side of the H(BC) peaks only at the highest stresses. For all stresses
the sum of amplitudes of both lines attributed to the BC hydrogen equals to the
amplitude of the unsplit line.

The similar stress experiments have been performed for the samples where
the stress has been oriented along different crystallographic directions. Figure 2
shows a comparison of the spectra taken for different sample orientations. It is
seen that, besides what has been already presented in Fig. 1, the Laplace DLTS
peak does not split when the stress is applied in the (100) direction and it splits
into two components of equal amplitudes for the (110) direction. The number
of peaks and their amplitude ratios, observed for different sample orientations
for the E3' donor level, indicate the C3v symmetry of the isolated bond centred
hydrogen. In the consequence, the result is in agreement with the model of the
defect. The symmetry of the bond centred hydrogen has been already postulated
by Gorelkinskii and Nevinnyi basing upon the photo EPR measurements [6]. In
our case the defect symmetry has been demonstrated for the donor energy level
for the first time and correlated with the stability and diffusion studies performed
in Ref. [4] .

The microscopic structure of the E3' level has been additionally confirmed
by an analysis of the stress-induced defect alignment effect. In this experiment
the stress is applied to the sample at higher than the measurement temperature
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(140-190 K) and the sample is then cooled down with the stress kept on. The diode
bias is also kept on during the cooling process, which assures that the hydrogen
is in the positive charge state. The temperatures where the stress is applied is
chosen such that the hydrogen reorientation rate (a jump from one BC position to
another) is sufficient for hydrogen to change the bond to occupy during a period of
a few minutes of the annealing time. On the other hand, this temperature cannot
be too high as hydrogen may diffuse as far as an average distance to a nearest
trap, e.g. an oxygen atom.

It can be expected, and has been shown by the theory (see, e.g., Ref. [2]),
that the hydrogen taking the BC position has to push aside both neighbouring
silicon atoms. Consequently, if the bond accommodating hydrogen is externally
stressed then one can expect that this would make this bond unfavourable for
hydrogen to take when it jumps from one bond to another. This effect has been
clearly seen when the alignment phenomenon is observed for the (111) sample. In
this case the 3:1 line splitting means that one bond (out of four possible) is parallel
to the stress and remaining three are at a certain certain angle. The alignment
process led here to a loss of the amplitude for the smaller line while the larger line
used to gain the same amount of amplitude. For the (110) sample, where the line
splitting is 1:1 (actually 3:3 as there are six equivalent orientations of a defect with
a trigonal symmetry and the stress), the defect configurations represented by the
right hand side line in the spectrum seem to have a lower angle to the stress as
this line has been loosing the amplitude during the alignment process, while the
other three configurations (the left hand side line) have to have a larger angle to
the stress as this line has been gaining the amplitude.

The isolated bond centred position of hydrogen is a highly unstable configu-
ration. At temperatures above 110 K hydrogen in the neutral charge state starts
to diffuse and can be easily trapped by the nearest oxygen. It seems that the per-
turbation of the bond centred hydrogen donor level (E3") coming from oxygen
is rather weak as both donor levels (E3' and E3") have exactly the same carrier
emission characteristics. On the other hand, both of them differ very much in the
stability and the diffusion properties (see Ref. [4] for details). The conversion of the
oxygen perturbed bond centred hydrogen to the negative charge state results in
the appearance of much deeper acceptor level. Such a sequence of the energy levels,
i.e. the donor level above the acceptor level, is a consequence of the negative-U
character of the defect. This character of the isolated hydrogen in silicon has been
postulated for a long time by the theory and practically never evidenced. Johnson
et al. have observed an appearance of non-stable deep acceptor state immediately
after the phosphorus—hydrogen pair breaking [7]. This experiment could not be
reproduced independently [8]. Recently, it has been shown that the acceptor levels
related to the isolated BC hydrogen and oxygen perturbed BC hydrogen should
coexist as the donor levels attributed to both of them (E3' and E3") coexist as
well [9].

When the Fermi level is above the E3" level the oxygen perturbed hydrogen
immediately traps an extra electron and converts to a negatively charged defect.
For hydrOgen in the space charge of the diode one can easily observe this two-step
capture process: H+ + 2e - → H0 + e - H— and allows this process to occur
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Fig. 3. The capacitance trace of the proton implanted Si(n) Cz sample. The first tran-
sient of the ΔCt amplitude starting at t = O s is related to the thermal emission from the
E3" donor state, the steady-state capacitance śtep invoked by a short sample illumina-
tion (of the amplitude ΔCphoto ) is related to photoionisation of the hydrogen acceptor
state. The solid and dashed lines were recorded after two different initial filling pulses:
0.015 ms and 1 ms, respectively. See the text for details.

only during a certain time. The first step is usually very fast, the following is much
slower and takes tenths of milliseconds. Varying the capture time it is thus possible
to change a ratio of defects being in the neutral and negative charge state.

Figure 3 shows that when the oxygen perturbed BC hydrogen converts to a
deeper energy state it indeed captures an extra electron. A number of defects being
in the E3" state and in the deeper one is monitored by observation of amplitudes
of the thermal and optical emission transients, respectively. In this experiment
the temperature is chosen such that the thermal emission from the E3" donor
state has an easily measurable value, but this temperature is much too low for the
thermal emission from the deeper state to occur. The solid line shows a trace of the
diode capacitance after 0.015 ms filing pulse. Immediately after the pulse, similarly

, to a conventional DLTS experiment, the thermal emission transient of the ΔC t

amplitude from E3" is seen. Next, a short white light illumination photoionises all
defects remaining in the space charge region and deeper than E3". The amplitude
of this photoionisation process is assigned in Fig. 3 as ΔC photo • If any, but longer
than the first one, filling pulse is applied (see the dashed line) then the amplitude of
the first transient decreases, as the defect in the E3" state has more time to capture
the second electron, and the amplitude of the photoionisation process increases. A
simple comparison of the solid and dashed lines shows that an increase in ΔCphoto
is twice bigger than the decrease in ΔCt. In separate experiments the energy of
this deeper acceptor level of the oxygen perturbed hydrogen has been found to be
equal to 0.68 eV below the conduction band evidencing in this way the negative-U
character of this defect [9].

All the above described experiments can be performed only if the sample
is proton implanted at low temperature and the following measurements are re-
alised in situ without taking the sample temperature much above the implantation
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Fig. 4. Conventional DLTS spectrum of the Si(n) Cz sample after a room temperature
implantation. Different radiation defects, or groups of defects, are assigned.

temperature. When the implantation is done at room temperature then hydrogen
is immediately trapped by vacancies or vacancy-related complexes formed in the
same implantation process. Figure 4 shows the conventional DLTS spectrum of the
proton implanted sample of the Czochralski grown n-type silicon. All of the peaks
are associated to defects which are related to vacancies created in the crystal by
the implantation process. The group of defects seen as the most right hand side
peak has been already identified by us as different vacancy related complexes, some
of them decorated with hydrogen [10]. Unfortunately, this group is too complex to
perform unambiguous uniaxial stress experiments but its particular components
can be identified by comparison with the annealing studies performed on the iden-
tified signals with EPR [11, 12].

The effect of the uniaxial stress on the thermal emission could be observed
for the hydrogen decorated vacancy-oxygen (VO) complex (the A centre). The
structure of the A centre was evidenced long time ago by Watkins and Corbett
and its symmetry was found orthorhombic [13]. The DLTS signal related to the
vacancy-oxygen-hydrogen (VOH) complex is observed at around 170 K. At this
temperature the reorientation rate of VO is much too high to give a chance to
see the effect of the stress on the emission. However, it turned out that when
VO binds an extra hydrogen atom the reorientation rate of the defect is retarded
so much that the thermal emission of electrons from VOH becomes much more
probable than the reorientation of the whole complex. As a result, the experimental
conditions become favourable to observe the influence of stress on the emission.

Figure 5 shows how the Laplace DLTS peak splits under stress for different
sample orientations. For the (111) direction the peak splits into two equal lines,
for the (110) and (100) directions the ratio of the peak amplitudes are 5:1 and
1:2, respectively. In all directions the amplitudes of the split lines sum up to the
value of the amplitude observed for the unstressed sample. The observed pattern
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Fig. 5. The effect of the uniaxial stress on the Laplace DLTS spectrum of the VOH
complex for different stress directions.

and intensity ratios of the stress-split components are characteristic for a centre
with orthorhombic-I symmetry, i.e. similar to the VO complex. One could have
expected that the extra atom in the complex should have lowered the overall defect
symmetry, however, the recently identified EPR signal of the A centre binding
a single hydrogen atom displays the same orthorhombic symmetry [12] at this
measurement temperature. The symmetry of the defect becomes indeed lower if
the EPR signal is observed at much lower temperatures.

The vacancy in silicon leaves four broken bonds. In the VO complex two of
them are saturated with an interstitial oxygen atom, and the remaining two bridge
two silicon atoms along the (110) direction. In the VOH complex one of the latter
two bonds is saturated by hydrogen, the remaining one binds the electron. How-
ever, at temperatures around 160 K the hydrogen can very easily jump between
these two silicon atoms along the (110) direction and both, i.e. Laplace DŁTS
and EPR, experiments see its position averaged. This effect makes that the dy-
namic symmetries of the VO and VOH complexes observed at higher temperatures
are the same.

In summary, hydrogen forms different types of defects in silicon depending
on how it has been introduced into the crystal. The most simple form of them
is the isolated hydrogen in the bond centred position. This form is only observed
after proton implantation at low temperatures. The Laplace DLTS measurements
under uniaxial stress confirm the trigonal symmetry of this defect. In the n-type
silicon the BC hydrogen captures an extra electron forming a much deeper ac-
ceptor state stable up to at least 220 K. This reversed sequence of the energy
levels, i.e. the donor above the acceptor level, indicates the negative-U character
of the isolated and oxygen perturbed configurations of hydrogen. Finally, hydrogen
can compensate various implantation created defects in silicon. In the intermedi-



Hydrogen and its Complexes in Silcon 239

ate temperature range (well above the liquid nitrogen temperature) hydrogen, al-
though bound by a defect, can reconfigure quickly within the unit cell showing the
defect symmetry much higher than one would expect from a frozen configuration
of atoms.
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