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Theoretical study of the binding energies of an off-center donor hydro-
genic impurity in a cylindrical quantum well wires semiconductor is pre-
sented. Calculations are performed in the framework of the effective mass
approximation using the variational approach. We describe the effect of the
quantum confinement by an infinitely deep potential well and we take into
consideration the interaction between the charge carrier (electron and ion)
and the optical phonons (confined longitudinal optical and surface optical).
Our results show that the impurity binding energy depends strongly on the
spatial confinement, the impurity position and the polaronic corrections.

PACS numbers: 71.38.-1-i, 73.20.Dx, 73.20.Hb, 73.20.Fz

1. Introduction

With recent progress in nanofabrication technology, it has been possible to
fabricate new structures of semiconductor such as two-dimensional quantum wells
(QWs), one-dimensional quantum well wires (QWWs) and zero-dimensional quan-
tum dots (QDs). Extensive theoretical and experimental work have been devoted
to the study of the optical and electronic properties presented by these nanostruc-
tures because of their possible application in optoelectronic device [1-15].

The presence of the impurities in these systems contributes to additional
response when external probes are applied. Since the pioneer work realized by
Bastard [1] of the hydrogenic impurity binding energy in quantum well, extensive
investigation has been reported as a function of different parameters such as the
spatial confinement, the impurity position and the applied external field (electric
and magnetic field) [16-22].

Since the carrier—charge phonon interactions are essential to understand the
experimental observation spectrum in semiconductor [23], the polaronic effect has
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become a main problem in the physics of low-dimensional systems. Recently vari-
ous investigations, on electronic properties in low-dimensional semiconductor, have
taken into consideration the effect of the electron—phonon interaction. Zhou and
Gu [24] have studied the cyclotron resonance of the electron in cylindrical quantum
well wire by taking into account the interaction of the electron with the surface
optical (SO) phonon modes. They have shown that the polaron self-energy and
the cyclotron frequencies decrease as the wire size increases. Sheng et al. [25] have
investigated the polaron self-energy and the renormalized effective mass due to the
SO phonon modes. Zheng and Matsuura [26] have studied the effect of both the
confined longitudinal optical (LO) and interface optical (IO) phonons on the exci-
ton binding energy. Chen et al. [27] have investigated the thickness dependence of
the binding energy of an impurity bound polaron in a parabolic quantum dot sub-
ject to a magnetic field by using the second-order perturbation theory and taking
into consideration the electron—bulk LO phonon coupling. They have shown that
the effect of the electron—phonon interaction enhances the binding energy. In the
previous theoretical investigation, the ion—phonon interaction is not included. This
last interaction affects the polaronic contribution to the binding energy as it was
pointed out by Marini et al. [28] for a donor-like exciton in spherical quantum dots
and Sheng and Gu [29] for the binding energy for exciton in cylindrical QWW.

In this work, we report a variational calculation of an off-center donor impu-
rity binding energy in cylindrical quantum well wire embedded in dielectric matrix,
within the effective mass approximation. We consider that the electrons are con-
fined in an infinitely deep potential well. The coupling effect of different phonon
modes (confined LO and SO) with the charge carrier (electron and ion) is included.
In Sec. 2 we describe the theoretical model based on a variational approach, in
Sec. 3 we give the numerical results and discussion. The conclusion is given in the
last section.

2. Theoretical model

The Hamiltonian of a shallow hydrogenic impurity in a cylindrical quantum
well wire, embedded in dielectric matrix, interacting with different optical phonon
modes (confined LO and SO), is written as



ωTO is the transverse optical phonon frequency and Ed is the matrix constant
dielectric. Im , Km are the modified Bessel functions and I' m, Km' are the first
derivatives of the modified Bessel functions of m-th order with argument kR.
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The second term in (1) is the total Hamiltonian of the free phonon field in cylin-
drical QWW

where A+mn(k) [Amn (k)] is the creation [annihilation] operator of the confined
longitudinal optical phonons with the frequency ω LO (they suit the commutative
rules of bosons) and the wave vector (k11 = Xmn,/R, k), where Xmn is the n-th root
of the m-th order Bessel function and k is the projection of the wave vector on
the z-axis of the wire. Bt (k) and Bm (k) are the operators corresponding to the
surface optical phonons with the frequency ωso •

The eigenfrequencies for different modes of phonon are obtained by using
the standard boundary conditions of electrostatic and taking into consideration
the geometry of the cylindrical QWW [30]

He_LO and Hion_LO describe the interaction Hamiltonian of an electron and an ion
with the confined LO phonon modes, respectively [31]. Vmn is their corresponding
Fourier coefficient given by

where Vo = πR2 Lz is the crystal volume and L z is the length of the wire. He—Lo
and Hion_LO are the Hamiltónian interaction of an electron and an ion with the
SO phonon modes
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In the following, we shall adopt the variational treatment developed by Lee et
at [32], for quasi-one-dimensional systems, to deal with the Hamiltonian (1). We
use the following unitary transformations:

where fmn,(k ) and gm(k) are the functions, which are determined by the variational
means.

For the surface phonons, the inter-subband transition can be neglected
and the electrons are assumed to occupy only the lowest-subband state (n = 1,
m = 0). We only consider the lowest surface phonon mode (m = 0) [25].

At low temperature limit, few phonons are excited, we can consider that
|0,0) is the ground state of phonons. The wave function of the system can be
written as

where Φe(ρ,φ , z) is the electron wave function in cylindrical quantum well wire.
The expectation value of the Hamiltonian H* in such a state is riven by

fn and g* are simply the conjugate formulas of Eqs. (21) and (22).
In the above expressions, we have introduced the parameters η1 and rte such

as
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By putting formulas (21), (22) and their conjugates into (23), (24) respectively
and expanding them to the first power of qz (electron wave vector), η1 and η g will
be given by

2kLo = \2m*ωLo/h is the polaron wave vector and a = C2k 2 E^ — ó is the
LO

coupling constant of the electron—LO phonon interaction.
The effective Hamiltonian Hp becomes

VI, o and Vso are the effective potentials induced by the interaction between the
electron and the confined LO phonon and SO phonon, respectively
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The effective potentials induced by the ion—phonon (confined LO and SO) coupling
are expressed as

In order to calculate the impurity binding energy, we consider the following ground
state of the free electron:

The ground state wave function with the impurity is taken as

where N is a normalization constant, z coordinate is the relative separation of the
electron from the impurity ion along the axis of the QWW and λ is a variational
parameter, which is determined by minimizing the energy,

The impurity binding energy is defined as the ground state energy of the
system without the Coulomb term, minus the ground state energy in the presence
of the Coulomb term,

Following Li et al. f351. we can set from Ea. (301:
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The bound polaron's effective mass m, can be approximately evaluated by
considering αC « 1 and aD <1, as

mp * = m* (1 + 2αC+ 2αD), 	 (43)
where C and D are respectively given by Eqs. (27) and (28).

The expected value of m p * referring to the electronic wave function can be
written as

mp = m* (Φe(ρ, z) |1 + 2αC + 2αD|(Φe(ρ , z) ).	 (44)

3. Results and discussion

This section is devoted to the numerical results obtained in the case of CdTe
cylindrical quantum well wire embedded in dielectric matrix of constant εd = 1.
The physical parameters corresponding to the polar crystal CdTe are: ε0 = 9.6,

= 7.13, mó = 0.091m0, hωLO = 20.84 meV, a = 0.315, a* 	 55.91 A and
R*	 13.34 meV where R* = m*e 4 /2h 2 EÓ and a* = h2ε0/m*e2 are the effective
units of energy and length respectively.

In Fig. 1, the impurity binding energy is plotted against the cylindrical QWW
radius R for different impurity positions (p0 = 0, p0 = 0.5R and p 0 = R). The

Fig. 1. Binding energy of a donor impurity as a function of the cylindrical quantum
well wires radius for different impurity positions (p0 = 0, p0 = 0.5R, p0 = R). The solid
and the dotted curves represent the binding energies without (Eb) and with (Eb h ) the
phonon corrections, respectively.
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figure shows on one hand that the impurity binding energy depends strongly on
the size of the wire; when the wire radius decreases, the binding energy, in the
presence and absence of the polaronic effect, increases. This is due to the wave
function which is more compressed when the wire size decreases, consequently
the binding energy enhances. On the other hand, the binding energy depends on
the impurity position; as the impurity moves from the center to the edge of the
wire, the impurity binding energy diminishes. This result is consistent with that
obtained by Brown and Spector [19] in the case when the phonon effect is ig-
nored. The inclusion of the optical phonon leads to an enhancement of the binding
energy.

Fig. 2. Shift binding energy DEb of a donor impurity, due to the polaronic effect plotted
versus the wire radius R for different impurity positions (p0 = 0, p0 = 0.5R, p 0 = R).

In order to give a clear picture of the polaronic effect on the donor impurity
binding energy, we define the shift energy due to all phonons modes (confined
LO and SO) as the difference between the binding energy in the presence and
absence of these optical modes DEb = Ebh - E. Figure 2 displays the pola-
ronic correction versus the wire radius R. for different impurity positions (po = 0,
P0 = 0.5R and p0 = R). The shift energy is more pronounced for a strong con-
finement size and decreases as the QWW radius increases. For an impurity placed
at the center of the wire the polaronic corrections are more significant and as the
impurity moves away from the center the polaronic corrections become smaller.

To show the dependencies of the impurity binding energy on the impurity
position and the polaronic effect, we have plotted in Fig. 3 the binding energy
versus the impurity position for different wire radii (R = 0.8a*, R la* and
R = 1.5a*). We can note that for a fixed QWW radius, the binding energies are
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Fig. 3. Binding energy of a donor impurity as a function of the impurity position
for different wire radii (R = 0.8a*, R = la* and R = 1.5a*). The solid and dotted
curves represent the binding energies without (Eb) and with (Ebh ) the effect of phonons,
respectively.

higher for an on-center impurity and as the impurity moves from the center to the
edge of the QWW, the impurity binding energy decreases. This behavior is due
to the wave function, which vanishes at the boundaries, and thus its contribution
to the binding energy of a QWW with an off-center impurity is smaller than a
QWW with an on-center impurity. These results are consistent to that obtained
by Montenegro [17] in cylindrical quantum well wire and Bose [16] in spherical
quantum dot in the absence of phonons. Figure 4 shows the polaronic correction
plotted versus the impurity position for different wire radii (R = 0.8a*, R = la*
and R = 1.5a*). This shift energy is more significant for an impurity placed at the
center and as the impurity moves away from the center, these polaronic corrections
become smaller. Furthermore, these corrections are important for a thin wire and
decrease as well as the confinement size decreases. An inclusion of the ion—phonons
coupling imposes an exchange term (ion—electron interaction via phonons) whose
effect is substantial [28]. The contribution of each of the phonon modes to the
binding energy has two components: one attractive due to electron—phonon inter-
action and one repulsive due to the ion—electron interaction via phonon (exchange
term). This result is in agreement with that obtained in the case of exciton for LO
and SO phonon in Refs. [28] and [29] respectively. The correction of each mode
of phonon to the binding energy depends strongly on the behavior of these two
components in both ground and subband states. We notice that the optical surface
phonons effect is less important than that of confined LO phonon. This result is
reflected in Fig. 5, where we have displayed the correction to the effective mass due
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Fig. 4. Shift binding energy plotted versus the impurity position for different cylindrical
QWW radii (R= 0.8a*, R = la*, and R = 1.5a*).

Fig. 5. Corrections of the electron effective mass given by the confined LO and SO
phonons and their sum as a function of the QWW radius.

to different phonon modes as a function of the wire radius. We find that the cor-
rection due to the SO phonon decreases more rapidly as the wire becomes thicker.
The effect of SO phonon is important only for a small wires while the LO phonon
contribution is predominant.
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4. Conclusion

In conclusion, we have studied the effect of the charge carrier (electron and
ion)—phonons (confined LO and SO) coupling on an off' center hydrogenic impurity
binding energy in a cylindrical quantum well wire. Our calculations are performed
within the effective mass approximation and using the variational treatment. We
have considered that the bound electron is confined in an infinitely deep potential
well. The results show that polaronic effect is important and cannot be neglected.
Furthermore, these corrections as it is shown in the figures depend on the confine-
ment size and the impurity position. The SO phonons are important when the wire
size is sufficiently small while the confined LO phonons are predominant when the
wire size becomes large.
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