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CALCULATIONS OF EuTe MAGNETIC PHASE
DIAGRAM FOR EXTERNAL PRESSURE
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The magnetic phase diagram of europium telluride, EuTe, under exter-
nal high pressure is theoretically investigated. Besides nearest-neighbour and
next-nearest-neighbour exchange interactions, the long-range dipolar and bi-
quadratic interactions are taken into account. The functional dependences of
these interactions on the lattice constant are proposed. The calculated Neel
and Curie temperatures are compared with the experimental data. Two new
phases, antiferrimagnetic and ferrimagnetic, have been found at a high pres-
sure and low temperatures.

PACS numbers: 75.10.—b, 75.50.Ee, 75.50.Pp

1. Introduction

In the group of europium chalcogenides EuX (X = O,S,Se,Te) the europium
telluride, EuTe, is a well-known example of second-type antiferromagnet [1-5].
EuTe crystallizes in the cubic NaCl lattice and its magnetic structure is of the Mn0
type. The spontaneous magnetisation favours antiparallelly alignment in (111)
planes with a small anisotropy along (112) directions [4].

The magnetic properties of EuTe arise from well-localized spins of Eu++
ions. The Eu++ ion has the 8S7,2 ground state and a weak interaction with the
crystalline field. Being a semiconductor, EuTe is a good example of Heisenberg
isotropic magnet with the spin magnitude S = 7/2 [4-6]. Its former theoretical
description has been given within the Heisenberg model with nearest-neighbour
(nn) and next-nearest-neighbour (nnn) interactions taken into account [5]. The
number of nn is z 1 = 12, with 6 spins laying in the same (111) plane and with
6 spins in the neighbouring (antiparallelly polarized) planes. The number of nnn
is z2 = 6, and in this case all spins are laying in the neighbouring planes.

At a normal pressure, the nn direct interaction, J1 , is known to be positive
and about three or four times weaker than the nnn one, J2, which is indirect (via
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chalcogen ligand) and negative. The resulting spontaneous antiferromagnetic state
exists below the Neel temperature TN 9.6 K. The asymptotic Curie temperature
is known approximately as Tc —4 K [5]. The lattice constant of EuTe at a
normal pressure is ao = 6.598 A and the magnetic unit cell is twice bigger than
the chemical unit cell.

The first theoretical description of EuTe was done in the molecular field
approximation (MFA) for a Heisenberg magnet, with only J1 and J 2 interactions
taken into account [5]. However, as it was shown in [7] by the energy arguments, the
long-range dipolar interactions are also important, being responsible for the spins
alignment within the (111) plane. The value of dipolar interaction was estimated
in [7] and its dependence on the lattice constant a -3 ) was there established.

Moreover, in the papers [8, 9] the role of biquadratic interactions was pointed
out. These interactions enabled us to explain the magnetisation measurements
versus temperature [8], and were also discussed in the context of the Curie tem-
perature and susceptibility calculations [9]. Thus, the presence of biquadratic in-
teractions can help in explaining some experimental details which could not be
predicted within the pure Heisenberg model.

Apart from one single attempt [10], the last two above-mentioned interac-
tions, i.e., dipolar and biquadratic, have never been taken into account simulta-
neously together with the Heisenberg Hamiltonian. In this paper we intend to
improve this deficiency, at least in the case of the description of EuTe.

The increasing interest in studies of EuTe is connected with the measure-
ments under high pressure [11-14]. The magnetic phase diagram of EuTe has been
found in [13] for a different external pressure and lattice constant a corresponding
to it. It turned out that near 8 GPa EuTe undergoes a pressure-induced phase
transition from antiferromagnetic to ferromagnetic ordering. The ferromagnetic
state can exist until about 11.7 GPa where the structural change to CsCI lattice
takes place [11].

The aim of the present paper is the theoretical explanation of the EuTe phase
diagram obtained in [13]. Apart from the classical Heisenberg Hamiltonian with nn
and nnn interactions, we will take into account the dipolar and biquadratic inter-
actions as well. As the external pressure changes the lattice constant, a, we have
to take into account the lattice constant dependences of all relevant interactions.
Such dependences are generally unknown from the theory (with the exception of
dipolar interactions) although some suggestions concerning J1(a) and J2(a) can
be found in the literature [2, 5, 6, 14]. However, it turns out from our calculations
that, if the biquadratic interactions are taken into account, the former assumptions
about J1(a) and J2(a) have to be essentially verified.

For the studies we adopted the molecular field approximation based on the
Gibbs free energy analysis. The theoretical method is developed in the next section.
In the third section the numerical results are presented and their discussion has
been made.
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2. Theory

The Hamiltonian of the system can be written in the following form:

where the spin magnitude S = 7/2, J1 and J2 are the exchange integrals for nn
and nnn interactions, respectively, whereas A describes the strength of biquadratic
interactions, both nn and nnn. The fourth term in the Hamiltonian stands for
the interaction with an external field, and the last term describes the long-range
dipolar interactions.

The Gibbs energy of the system can be calculated for the Hamiltonian (1)
from the well-known Bogolyubov expression

G=G(H0)+(H-H0)0

In Eq. (2) (...)0 means the thermodynamic mean value calculated with the den-
sity matrix corresponding to some trial Hamiltonian H{0. Here we assume that
the trial Hamiltonian is essentially the molecular field Hamiltonian, containing as
the variational parameters the molecular fields associated with the bilinear and bi-
quadratic interactions. Performing a minimisation procedure for the functional (2)
with respect to the variational parameters, the equilibrium Gibbs energy per spin
can be found in the following form:

In Eq. (3) we introduce the following notation: mi = (Si) 0 and qi = ((Si) 2 ) 0

are the magnetisations and quadrupolar moments per spin in i-th (111) plane,
respectively. The index i = a, b, where a and b are the two neighbouring (111)
planes of the antiferromagnet. The magnetisations mi and quadrupolar moments
qi are then given by the analytical formulae
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and

In Eqs. (6-8), the following abbreviated notation was used:

with ,6 = 1/kBT and h = —gµBH2 . The a parameter appearing in the above
equations corresponds to the long-range dipolar interactions and is given by the
formula

where rid is the distance between i-th and j-th spin and zi,j is a projection of rid
on the magnetisation (z-axis).

Thus, we see that in order to calculate the Gibbs energy from Eq. (3) one
has first to solve four coupled equations (4) and (5), for mi and qi (i = a, b).

Having calculated the Gibbs energy, one can obtain all thermodynamic (mag-
netic) properties of the system in equilibrium. For instance, the sublattice mag-
netisations mi (i = a, b) satisfy the following thermodynamic formula:

giving the mean magnetisation per spin in the system.
By linearisation of the magnetisation (i.e., m a --> O and ma —+ O in Eqs. (4)

and (5)) and putting qa = qa = q, we obtain the temperature of continuous phase
transitions from an ordered to a paramagnetic state. The result is

where "—" corresponds to the Neel temperature TN and "±" corresponds to the
Curie temperature Tc. The quadrupolar moment q is then given by the formula
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It is straightforward to check from Eq. (15) that if we neglect the dipolar in-
teractions (i.e., a = 0) and biquadratic interactions (A = 0) then our formula (15)
gives the well-known expressions for the Neel and Curie temperatures of S = 7/2
magnet, with z 1 = 12 and z2 = 6 [2, 4-61 namely:

Thus, our formula (15) for the continuous (second order) phase transitions is more
general than those (18) and (19) known from the literature, taking into account
the dipolar and biquadratic interactions. Besides, the expression (3) for the Gibbs
energy allows us also to study the possible first order phase transitions, where
the linearisation of magnetisation is not valid. The numerical results based on the
above theoretical formulae will be presented in the next section.

3. The numerical results and discussion

The first calculations of the exchange integrals J1 and J2 were done in the
literature at a normal pressure on the basis of Eqs. (18) and (19), i.e., with the
long-range dipolar and biquadratic interactions neglected. On the basis of the
experimental data for TN and Tc, the obtained values for J1 and J2 were aver-
aged and presented in [5]. For EuTe the corresponding values are [5]: J1/kB =
(0.06 ± 0.02) K and J2/kB = (-0.20 ± 0.05) K. As it has been shown in [10],
the presence of the long-range dipolar and biquadratic interactions may markedly
change the values of J1 and J2. Namely, the strength of dipolar interactions (given
by Eq. (13)) can be estimated as [7]

where g 2 and a is the lattice constant of EuTe expressed in A.
On the other hand, the biquadratic interaction strength at a normal pressure

can be assumed as suggested in the paper [8], namely A/J2 = 1.5 x 10 -3 . Having
these two results and assuming that TN 9.6 K and Tc Re, —4 K, we obtained the
new values for J1 and J2 [10]: J1/kB = 0.036 K and J2/kB = —0.144 K. These
values will be now a starting point for further considerations including an external
pressure.

Under an external pressure the lattice constant a diminishes from a = ao =
6.598 A. (at p = 0) until a 6.21 (at p = 11.7 GPa), as presented in [13].
The change of the long-range dipolar interactions vs. a can be obtained from for-
mula (20). In Fig. 1 we plotted this dependence, showing that for higher pressures
the absolute value of the long-range dipolar parameter (α/kB) increases, and thus
these interactions become more important.

As far as exchange integrals are concerned, we assumed that they can be
described by the exponential functions of the type
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Fig. 1. The long-range dipolar interaction parameter c /k B vs. lattice constant a.

The three constant parameters for each function J1 and J2, i.e., B1,2, C1,2, and
D1,2, were obtained from three experimental points for TN and Tc at different
pressures. We have assumed the following experimental data [13]: at p = 1 atm,
a = ao = 6.598 A, TN = 9.6 K, Tc = —4 K; at p = 4 GPa, a = 6.415 A,
TN = 10.6 K, Tc = 1 K; at p = 8 GPa, a = 6.29 A, TN = Tc = 8.7 K. One
should note that the values of Tc for p = 1 atm and p = 4 GPa are the so-called
"asymptotic" Curie temperatures, whereas Tc for p = 8 GPa is a real phase
transition temperature. The asymptotic Curie temperatures have been taken from
the susceptibility measurements (Fig. 3 of Ref. [13]). On the other hand, the real
Neel and Curie temperatures have been shown in Fig. 5 of Ref. [13]. Using these
values we can calculate 6 coefficients B1,2, C1,2, and D1,2 from Eq. (15), provided
the biquadratic interactions in these points are known.

On the other hand, for the biquadratic interactions (both nn and nnn) we
assumed the two-parameter exponential curve

The E parameter in (22) is known from the literature, since it can be defined
at a normal pressure, when a = ao. Then, to be consistent with the previous
results [8, 10] we must assume that E = 0.0015. The last parameter in Eq. (22),
i.e., F, has been obtained from the assumption that the total phase diagram must
be best fitted to the experimental data. To achieve this task, we took into account
all experimental data presented in the phase diagram [13]. Then, we calculated a
series of phase diagrams, each for different F parameter. For each phase diagram
we found the least squares coefficient £ defined as

For the smallest coefficient E (E = 0.012) we found the best value of F parame-
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ter (F = 13.5), and hence all remaining parameters in (21) and (22) have been
obtained. The final results are

J1/kB = 0.0264 exp [12.710(a — 6.753) 2] 	 (24)

for nn interactions, and

J2/kB = —0.1420 exp [13.378(a — 6.569) 2 ] 	 (25)

for nnn interactions. Thus, for the biquadratic interactions we obtained the fol-
lowing function:

A(a)/J2(a) = 0.0015 exp [-13.500(a — a o )] . 	 (26)

Fig. 2. The nn exchange interaction J 1 and nnn exchange interaction J2 vs. lattice
constant a.
Fig. 3. The ratio of biquadratic to nnn interactions, A/J2, vs. lattice constant a.

The results of these calculations are presented in Figs. 2 and 3. From Fig. 2
we see the strong dependence of both J1(a) and J2(a) on the lattice constant. The
character of J1(a) dependence agrees qualitatively with that reported in [2, 5, 6],
obtained from EuX series. However, the J2(a) dependence shows rather a differ-
ent behaviour. It is not a constant, as assumed in [2, 6] from EuX series, neither
a decreasing function of a, as found in [5]. The shapes of J1(a) and J2(a) were
also discussed in [14]. The authors of [14] came to the conclusion that the func-
tional dependences of J1(a) and J2(a) obtained from the whole series of europium
monochalcogenides cannot be adopted for the description of pressure dependence
of one compound. In the light of our calculations we fully agree with the conclusion
that each compound should be treated separately.

The exponential function A/J2 is presented in Fig. 3. We see the rapid in-
crease in A/J2 for high pressures (at low lattice constant values) although the value
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of A remains always less than J2. To check the influence of biquadratic interac-
tions on the phase diagram we performed also calculations with the assumption
that A = 0, instead of Eq. (22). Then, from the least squares fitting we obtained
the coefficient E = 0.077 for the entire phase diagram, which is a much worse result
than the value E = 0.012 obtained with the function (26). The worse result for
A = O originates mainly from the underestimation of the Curie temperatures in
a ferromagnetic phase. Thus, it becomes evident that the biquadratic interactions
cannot be neglected in the phase diagram calculations.

Finally, the best fitted phase diagram of EuTe is presented in Fig. 4. The
solid curves are representing the continuous phase transitions from antiferromag-
netic (AF) and ferromagnetic (F) to paramagnetic (P) state, i.e., the Neel (TN)
and Curie (Te) temperatures, respectively. These curves were calculated from the
expression (15) with the help of (20) and (24-26). For the comparison, the experi-
mental data taken from [13] are presented in the same figure. One can see that the
theoretical curves are satisfactorily fitting the experimental data. In particular,
the smooth experimental maximum of TN occurring near 4 GPa can be obtained
if we assume that J2(a) is an exponential function. This maximum could not be
explained if J2(a) were a linear function of the lattice constant [13].

Fig. 4. The phase diagram calculated for EuTe. The small squares represent the ex-
perimental data taken from [13]. The regions of stability of various phases are depicted.

In this diagram, however, for lower temperatures and high pressures we found
two new phases, i.e., the antiferrimagnetic (AI) and ferrimagnetic (I) ones, which
have not been reported in the previous papers. Both these phases are character-
ized by different sublattice magnetisations (m a # mb) and different quadrupolar
moments (0 < qa # qa > 0), where a and b are two neighbouring (111) planes.
For the I-phase both magnetisations are of the same sign as they emerge from the
ferromagnetic phase. On the other hand, the AI-phase emerges from the antiferro-
magnetic phaseand therefore is characterized by the opposite signs of ma and mb .
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The stability of AI and I phases has been confirmed by the Gibbs energy
analysis (Eqs. (3)), when the various possible solutions of Eqs. (4) and (5) were
taken into account. The phase transition lines (dotted) from AI to AF phase and
from Ito F are the continuous phase transitions. The vertical line (dashed) between
the I and AI phases represents the boundary of discontinuous (first order) phase
transitions, and is determined by the crossing of the Gibbs energies of neighbouring
phases.

The new obtained phases, i.e., AI and I, are resulting from the strong bi-
quadratic interactions in the high pressure region, as A influences there the com-
petition between J1 and J2. The biquadratic interactions, having a negative sign,
suppress the higher states of the spin S = 7/2 and therefore they lower the ground
state magnetisation, when T --> O.

In conclusion, we calculated the phase diagram of EuTe under the high pres-
sure, describing the experimental data [13]. The long-range dipolar and short-range
biquadratic interactions were taken into account. The analytical, semi-empirical
formulas for 42(a) and A(a) have been found. In addition, the new AI and I
phases have been predicted to occur in some region of the phase diagram. The
experimental verification whether the AI and I phases do exist or not in EuTe
would be a crucial test to check the reasonableness of our assumption about the
strength of biquadratic interactions in this compound.
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