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In the paper the efficiency of the light energy conversion from the fun-
damental wave into its second harmonics is analysed. A standard model of
three waves mixing in media without centre of symmetry was applied. It was
shown that the full conversion of energy is possible if an appropriate phase
difference exists and provided that at least a minimal energy of the second
wave is present on the input. The results are expressed both by analytical
formulas and a phase space reconstruction. A simple experimental setup to
enhance the second harmonics is proposed.
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1. Introduction

The possibility of energy transfer between light waves of different frequencies
is of great interest in modern nonlinear optics [1]. Especially important is the pro-
cess of second harmonics generation (SHG) which appears in media without centre
of symmetry (exhibiting the second-order nonlinearity). The problem of making
this process more effective is the principal one [2] as it is strictly related to the ac-
tion of radiation converters. In particular, second harmonics generation might be
an efficient source of the blue light laser beams. It is commonly accepted [1-3] that
such a process is not possible under finite value of the phase-mismatch parameter.
It is practically difficult to ensure full synchronisation of phases of two beams that
are spatially bound and that this condition is crucial in the conversion process.
There exist several methods of enlarging the efficiency of the conversion; some of
them are described in [3]. They are based mostly on the natural anisotropy of the
refraction index in media exhibiting dichroism. In the case when the anisotropy
exceeds the dispersion effect between first and second wave, there exists an angle
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of full phase matching. The electric field vector Ew oscillates perpendicularly to
the plane determined by the main axis of the crystal and wave vectors kw and k2w ,

vector E2„ lies then in this plane being perpendicular to both wave vectors. In
this configuration, the phase-mismatch parameter Δk = | kw — k2 ,| vanishes, thus
full phase synchronisation appears. Full conversion is however impossible because
Poynting vectors of both beams are not collinear. The beams diverge, therefore
the region of interaction of beams is limited. Besides spatial dimensions of them
are small [4]. These factors stand in contradiction with the condition Δk = O.

In this paper we suggest that the condition Δk = O is, in general, not nec-
essary for the full conversion. Instead of that we should ensure a non-zero compo-
nent of doubled frequency at the input. Additionally, its phase must be properly
matched with regard to the phase of the fundamental beam. We derive analytical
formulas for this minimal amount of the second harmonics, necessary for the full
energy conversion. As a special case we obtain from them formulas corresponding
to the standard condition Δk = O. We present also adequate phase portraits of
the mixing process for several values of the phase-mismatch parameter Δk. As a
conclusion we suggest a simple experimental model allowing effective doubling of
the laser beam.

2. Quantitative analysis of the second harmonics generation

We consider two beams with frequencies w and 2w incident perpendicularly
on a transparent medium without centre of symmetry. Let the main optical axis be
parallel to wave vector k. According to this assumption the length of interaction is
sufficiently large. This direction will be called Oz axis. The nonlinear properties of
the medium are described by the third-rank tensor x 2 (w). The equations describing
the evolution of E for both waves in the medium have a standard form [1-3]:

and np are linear refraction coefficients for both frequencies. The mismatch pa-
rameter Δk is given by the formula

In this paper the following normalisation is used for the electric field:

Moreover, we normalise the coordinate z by introducing the new variable s= z/L.
Similarly, the new mismatch parameter is equal OK = Δk L. These transforma-
tions allow to write Eqs. (4) in the form



It is easy to see that formulas (10) and (12) are analytically identical with expres-
sions (7) and (8) which were obtained for the SHG process with Δk = O.
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The general solution of the two-wave mixing process is a special case of the solution
for the non-degenerate three wave mixing processes given in [5]. In this case one
obtains expressions in the form of elliptic functions of Jacobi and of Weierstrass.
If Δk = O and if the second harmonics is absent on the input (u 20 E U2,0 (0)
a3,(0) = O but u 10 = u„ (0) E a2„(0)) one gets the well known formulas [1-3]:

corresponding to the full conversion of basic beam. In a more general case when
u20 O (but still Δk = 0) for 90 E θ(s = 0) = ±π/2 one may derive (see [5]) the
expression

Hence we have a possibility of the full conversion even for Δk = 0, provided the
appropriate relation between phases of incident beams.
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3. Qualitative analysis of the SHG process
	A possibility of the full conversion for Δk≠ O was concluded from exact

solutions of Eq. (1). One can also analyse the wave mixing processes by means
of methods used in the theory of differential equations [6]. Qualitative features of
dynamic systems may be deduced without solving the equations. It is sufficient to
analyse the topology of trajectories of the system in the generalised "phase space"
(not to be mistaken with the phase of a wave).

In order to construct such a space we introduce a new variable (the amplitude
parameter):

It should be stressed that, for a lossless medium, the denominator of the above
expression is constant.

It is easy to verify that

we obtain an intensity - dependent representation of the phase-mismatch.
The variable fulfils the condition
0<C<1. (16)

Thus, for a given b, the function C(S, θ) determines a surface. The most interesting
are the lines of constant value of C, hereafter called "trajectories", because they
correspond to real dynamics of the system for which Eq. (14) holds.

In Fig. 1 we have shown trajectories (on a phase portrait) for different values
of b. Bold lines depict two extreme trajectories. First of them (full line) corresponds
to the full conversion of radiation, for which { = 1. As

this limit trajectory represents the trajectory C =√δ Another limit trajectory
(dotted line) corresponds to the zero value of the second harmonics at the input
(Co = 0), thus we have now to do with the strict SHG process. The formula (14)
implies that C = O. From this figure it is easy to see that for 6 = O (hence ΔK = 0)
the full conversion appears only when Co = O (no second harmonics on the input).
The angle corresponding to these trajectories θ = ±π/2. On the other hand, if
So < 1/3, then the conversion between two waves has oscillatory character. The
efficiency of this conversion gradually decreases and for bo = 1/3 reaches zero
value. In this case intensities of both two waves remain constant through the
whole interaction length. This corresponds to the notion of eigenmodes derived
in [7]. From Eq. (14) it also follows that such a situation exists for all values of ul
i u2 i for which the boundary condition u2o/u10 = 1/2 is fulfilled.

Figures la and b are qualitatively similar. However, the shape of the trajec-
tories C = v is different in both cases. Figure lb indicates the possibility of full
conversion for Co > b (or u 20 > ΔK 2 /4). This process is restricted by (15), hence
for b > 1 the full conversion is not possible, which is in agreement with Fig. lc.
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Fig. 1. Phase portraits for three values of the conversion parameter 6: (a) 6 = 0,
(b) 6 = 0.2, (c) 6 = 1. The solid line corresponds to the trajectory for which ((s = 0) = 0;
the dotted line is the limit trajectory ((s) —> 1, for which one can obtain the full
conversion of a monochromatic wave into its second harmonics.

4. Optical SH generator

Phase portraits method suggests how to design a simple experimental setup
for conversion of a wave into its second harmonics in the lack of phase synchronism.
A scheme of such converter is shown in Fig. 2. It consists of two appropriate plates
made of nonlinear transparent material of second-order nonlinearity; a slab of
a linear transparent material (for instance glass) fills the space between them.
In the first plate some amount of second harmonics is generated. Intermittent
material shifts the phase of this wave with regard to the basic wave; its thickness
is chosen in such a way that the system achieves the trajectory which enables
the full conversion. It may be realised in the next plate. Instead of matching the
thickness we may appropriately choose the intensity of the incident beam.
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Fig. 2. A scheme of an optical frequency converter: in the plate I (made of a nonlinear
material) an amount of second harmonics is generated; the second plate made of lin-
ear material appropriately shifts its phase. On the output from the plate III (made of
nonlinear material) one gets a beam consisting of the second harmonics only.

Fig. 3. Phase portraits illustrating the principle of action of an optical converter. The
solid line shows the evolution of the second harmonics in the first plate whereas the
dotted line — the evolution in the third plate. (a) 6 = 0.3; the intensity of the second
harmonics evolves along the line A —> B(B') . C(C') —* D; (b) the limit case 6 = 0.5.

The possibility of full conversion is restricted to cases for which 6 < 1/2,
or Δ K2< 2uw,(s = 0) (see Fig. 3a). The extreme case6 =1/2 is illustrated in
Fig. 3b. If

½<d<1(18)

(or 2u10 < 0K 2 < 4u 1 0), it is possible to apply a set of plates (a sandwich
structure).

Another possibility of steering the phase shifts in linear slabs might be based
on the Pockels (or Kerr) effects. Refraction index depends on the applied field
intensity (or its square). By changing the value of external field one may get the
desired value of phase difference between two waves.
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5. Summary

We have presented here a model of efficient conversion of a monochromatic
wave into its second harmonics in the absence of phase synchronism. The results
of calculations, as well as phase portraits analysis, lead to the conclusion that it
is possible to obtain the full conversion and show the way how to construct a fre-
quency converter. We propose a simple setup that can be used to check this idea.
Besides, our results enlarge the class of interesting non-centrosymmetric materi-
als by these in which the optical dispersion is essentially smaller than the optical
anisotropy. It implies also smaller absorption [4] that is important in signal pro-
cessing and transmitting.

It is also worthwhile to mention the advantages of the technique based on
phase portraits. Due to this one can obtain interesting (both qualitative and quan-
titative) results without solving complicated equations of motion.
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