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The critical behaviour of sound attenuation has been studied in an elas-
tically isotropic Ising system above the critical point on the basis of a com-
plete stochastic model including both spin-energy and lattice-energy modes
linearly coupled to the longitudinal sound mode. The effect of spin-lattice
relaxation on the ultrasonic attenuation is investigated. The crossover be-
tween Kawasaki behaviour and Murata—Iro—Schwabl behaviour is studied as
dependent on the values of ultrasonic frequency, reduced temperature, relax-
ation times, etc. A new high-frequency regime is discussed in the magnetic
systems. This new regime corresponds to an adiabatic sound propagation
and is very similar to the ones in binary mixture and liquid helium. A new
frequency-dependent specific heat being the harmonic average of the bare
lattice and critical spin specific heats is introduced. It was shown that such
specific heat describes the process of equilibration between spin and lattice
subsystems and includes the most important features of critical sound at-
tenuation.

PACS numbers: 05.70.Jk, 62.65.-{-k

1. Introduction

Usually a strong anomaly of sound attenuation is measured in Ising like
magnetic metals [1, 2]. It is supposed to be described by the theories [3-5] in
which the sound wave is assumed to couple to two critical spin fluctuations. The
sound attenuation coefficient is proportional then to the imaginary part of the
four-spin response function and the critical exponent characterising its divergence
is found to be zv+α, where z is the dynamical critical exponent, v is the exponent
of the correlation length and a is the exponent of the specific heat.

Contrary to metals, in magnetic insulators we observe a weak anomaly
in sound attenuation [1, 2], which has been phenomenologically explained by
Kawasaki [6] who postulated that in insulators, due to short-range exchange in-
teractions the dominant interaction between the phonon and the spin system is of
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the form of a linear coupling of the longitudinal sound mode to the spin-energy.
The latter quantity decays due to the spin-lattice relaxation and thermal diffusion.
For the ultrasonic frequencies the spin-lattice (or more correctly spin-energy-lat-
tice-energy) relaxation plays the essential role. Assuming only the specific heat
like singularity of the spin-lattice relaxation time and simple separability of con-
tributions coming from both types of coupling, Kawasaki was able to obtain weak
divergence of the sound attenuation coefficient proportional to the square of the
specific heat for the magnets, in which the first coupling is negligible. However,
as shown by the renormalisation-group analysis of the model of coupled spin and
energy fields [7], the first assumption is not correct sufficiently close to the critical
point where the energy relaxes with the same characteristic critical exponent as the
spin fluctuations, zE = z, because the singular part of the energy response func-
tion is dominated by the four-spin response function. Also the second assumption
concerning the separability fails near Tc as has been recently shown [8].

In this paper we use a complete stochastic model which includes interactions
between the scalar order parameter (spin) S, the acoustic phonon Q, spin-energy
es and lattice-energy eL modes in order to find a general expression for the sound
attenuation coefficient above the critical temperature. Introduction of the second
energy density associated with the lattice (or conduction electrons in some metals)
allows us to consider a much richer dynamics than that of the two limiting cases:
(i) pure relaxation to a reservoir with infinite thermal conductivity or (ii) pure
diffusion of energy. Our model permits also a study of the intermediate dynamics
between these limiting cases. The purpose of this paper is to demonstrate that
in magnets the critical sound attenuation behaviour is much richer than in other
critical systems (as for example liquid helium or critical mixture) owing to the
occurrence of two or three different regimes in the same system. It will be shown
that the strong sound attenuation anomaly (sometimes called Murata—Iro—Schwabl
behaviour) as well as the weak anomaly (Kawasaki behaviour) can be obtained
within our stochastic model depending on the relative size of the reduced temper-
ature, frequency and other parameters of the model. The nonuniversal amplitudes
for both types of behaviour are modified considerably by the presence of the sec-
ond energy field in comparison with one-energy-field model. In the high-frequency
regime we obtain a new kind of critical behaviour, which we shall call the adiabatic
behaviour, analogous to the critical attenuation behaviour in 4 He and in binary
mixtures. Contrary to the Murata—Iro—Schwabl and Kawasaki behaviour, the am-
plitude for the adiabatic limit does not change by the inclusion of the field eL.

We shall also show that in some regions of parameters the acoustic self-energy
is simply proportional to a frequency-dependent specific-heat C_ which is the har-
monic average of the bare lattice specific heat and the specific heat of an idealised
spin system (model A in terminology of Halperin et al. [7]). C_ has a simple inter-
pretation: it equals to the ratio of the heat transferred from one subsystem to the
other, to the induced temperature difference between subsystems. The important
point is that such specific heat shows three main types of singularities character-
ising the sound attenuation coefficient as the critical temperature is approached,
for both low and high frequencies.
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The paper is organised as follows. In Sec. 2 we introduce the model and
then perform some dynamical decoupling transformations. In Sec. 3 we obtain a
general expression for the acoustic self-energy taking into account the reducibility
of the latter with respect to energy propagators. In Sec. 4 many different regimes
for sound attenuation are discussed as a function of frequency, temperature, and
relaxation times. The scaling functions are determined within the one-loop ap-
proximation. We then show that for some regions of parameters the ultrasonic
attenuation can be written as the imaginary part of C_ (ω). The relevance of this
specific heat to the description of nonasymptotic sound attenuation is shown. In
Sec. 5 we summarise the results. In Appendix we present Gaussian transformations
decoupling the spin and the energy fields.

2. Model and basic formulas

The Hamiltonian of the system [7, 8] can be written as

where eαβ(x) are components of the strain tensor and the symbols Cap stand for
the bare elastic constants and Cs and CL are the spin and the lattice specific heat,
respectively. The unitary mass density and kBTC = 1 have been assumed. The first
three terms in the total Hamiltonian, describing the static behaviour of the system,
make the Ginzburg—Landau functional for the spin variable. The elastic energy is
given by the 4th and 5th term in Eq. (2.1). Here, we have made use of the relation

C11 — C12 = 2C44 applicable to the isotropic systems. The last two terms are
obtained from the lowest order expansion of the entropy functional with respect
to the energy fields. The other terms in the Hamiltonian describe interactions.
The constant g denotes the coupling of the (longitudinal) sound mode to two spin
fluctuations. The coupling of the sound to the energy fields is characterised by
the constants w and aw, where the parameter a is the ratio of these two coupling
constants, f is the coupling constant between the order parameter and the spin
energy generating the divergence of the specific heat.

After introducing the normal mode expansion of the strain tensor [5], the
dynamics of the system can be described by the coupled Langevin equations as
follows:
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The first two of these equations have been commonly used in investigation
of critical sound propagation [4, 5, 9]. The other two describe the energy flows
between the subsystems. In the absence of the nonlinear terms and noises they
transform into the equations describing the decay of the total energy e = es -f- er,
and equalization of temperatures of both subsystems

In a typical case the additional energy field er, can be regarded as the sum of
energies of all phonon branches except for the longitudinal acoustic phonons with
small wave vectors. These phonons are taken explicitly into account in the model,
as the quantity of our primary interest in this paper is the phonon response func-
tion. For higher frequencies in some metals we can also be interested in the energy
flow between the localised spins system and the conduction electrons system. If
the lattice degrees of freedom can be treated as an infinite heat bath (CI, > oo)
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the system may be also described by two energy densities. In that case, the second
energy density should be understood as the energy density associated with the
spin orientation of conduction electrons. We use the same denotation er., for this
density as the (true) lattice degrees of freedom play only the role of reservoir and
do not appear explicitly in the equations of motion. The total energy in the system
composed of the localised and conduction electrons is no longer conserved so we
have admitted the possibility of nonconserved total energy eL, + es (yL, # y) in our
general equations of motion.

Instead of using Eq. (2.2a—d), it is convenient to represent the model in terms
of the equivalent functional form [10] with a Lagrangian given by
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respectively. It is easy to see that for w » 1, which takes place for 	 O or
CL —. oo, the dressed spin-energy propagator reduces to the bare one and the
model with two energies reduces to the model without the lattice-energy field, in
which only the equation

matters in our considerations. Depending on the ratio of the bare relaxation rate
of the energy diffusion mode λsk 2 /Cs to the bare spin-lattice relaxation frequency
-y/Cs, the spin system can be then regarded either as thermally isolated from the
lattice (As k2/y » 1 and pure energy diffusion takes place) or as freely relaxing to
an infinite heat bath (λsk2/y « 1). The reason for introducing the second energy
field is now becoming clear. We expect that the model with only one energy density
gives a correct description of the dynamics only in the two limiting cases: for pure
diffusion and for pure relaxation of the energy field. As we want to be able also
to describe the dynamics which is intermediate between these two cases we have
included eL as a separate variable.

3. Acoustic self-energy

Having applied (2.8) and other dynamic transformations (A1—A3)
decoupling the spin and the energy fields, the acoustic phonon response function
G(k,w) = (Q-k,_-ϖQk,ϖ) can be written as follows, to the leading order in the
coupling constants g and w:

where Go(k, w) = (c2 k 2 + w 2 —iwOk 2 ) -1 is the free phonon propagator, c =C1 12 is
the bare sound velocity and

with S2 k,w = (SS)k,„ and Sk u, = (S2 )k , w . The explicit expressions for the coeffi-
cients X(k, w), Y(k, w), gi(k, w), and g2(k, w) as well as for the dressed propagators
DLo (k,w) and Dso(k,w) are given in Appendix. The crucial point in Eq. (3.2) is
that the four-spin response function is calculated with the Lagrangian which de-
pends solely on the spin variables. As the result of coupling of the spin variable to
the energy densities and phonons, the effective spin Lagrangian Leff obtained by
transformations (2.8, A1—A3) contains phonon- as well as energy-density-mediated
four-spin interaction u(k, w)S2 _k_w 4 w with u(k, w) given by (A5). A general ex-
pression for the interacting phonon response function is given by

where the phonon self-energy Σ (k, w) is the irreducible, with respect to phonon
lines, part of Σred(k,w). From Eqs. (3.1) and (3.3) the irreducible and reducible
parts are related through
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Next we may eliminate the dangerous resonances [8, 9] by replacing Go(k, w) with
Go(k, 0) in Σ(k, w), i.e. we set the strongly irrelevant parameters, the coefficients
at wkg and w 2 , equal to zero. In this paper we will not discuss the role of the
denominator in Eq. (3.4) assuming the elastic couplings g and w to be very small.
This assumption gives Σ(k, w) = Σred(k, w). It is consistent with neglecting the
higher order (in g and w) terms in Σred(k,w). Then also DLo(k,w) = DLO(k,w)

and Dso(k,w) = Dso(k,w). Small values of g and w enable to neglect the macro-
scopic instability [11], which is believed to take place in compressible spin systems
with positive specific-heat exponent near the transition temperature. The weak
first-order transition in such systems is a result of a non-analytical character of
the coupling constant u(k, w) at k = 0. For small g and w the first-order regime
can be probably observed only extremely close to Tc.

The perturbation expansion with respect to u(k,w) = u — 2f2 N(k,w)Γs
x Dso (k,w) shows that (ΓS2-k,- W S1 u,)Leff the four-spin response function, is
reducible with respect to (new) spin-energy propagator Ds and so is E. It is easy
to show that

The coefficient preceding (ΓS2- k,- („S32, W ) L e 11 in the denominator of Eq. (3.6) can
be written as 2f 2 Ds(k,w) with Ds(k,w) = Cs(1—iwb(k,w)) -1 . In the w = O
limit it is equal to v E 2 f 2 Cs • Here b(k, w) = , -27-4-,̀)z,and m = 1 — rs(k)rr,(k)

are coefficients containing the details of the dynamics. As (I'S2_k,_WSZY w)irr is a
vertex function, containing no energy resonances, only now we can replace other
irrelevant parameters in Eq. (3.6) like the coefficient at w in Dso, in the case of
nonconserved systems, by zero. We then obtain

where LA is the action of the model A of Halperin et al. [7], with uA = u — v. It
is assumed that the coupling constant v does not need to be very small but the
positivity of the four-spin coupling uA must be guaranteed.

In the case of a system with the total energy conserved we cannot proceed in
this way as Dso contains nonstatic relevant terms and u(k, w) in Leer contains a pole
reflecting conservation of energy and making the action of the model C [7] more
appropriate. However, as noted by Halperin et al. [7] if the spin-lattice relaxation
is sufficiently fast and the lattice conductivity is so large that the characteristic
thermal conduction rate is much faster than the characteristic rate of the order
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parameter, then one does not attain the critical region described by the model C
in the experimentally obtainable range of temperatures. In that case the model A
is more applicable. In the following we assume this situation for our model. A
detailed analysis of sound attenuation scaling functions for the model C will be
presented elsewhere.

Now we return to Eq. (3.7) which inserted into Eq. (3.5) yields

Next from Eqs. (3.2), (3.4), and (3.8) we obtain

Remembering that Cs — Ds(k,w) _ —iwb(k,w)Ds(k,w) and ignoring the first
noncritical term in Eq. (3.10) the acoustic self-energy can be written in a relatively
simple form [12]

4. Discussion

,4.1. General expressions

The critical contribution to the coefficient of attenuation is determined by
the imaginary part of L" and Eq. (3.11) implies
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The four-spin response W function usually is evaluated in the limit k = O
since in the ultrasonic experiments the wavelength is much longer than the cor-
relation length « 1) while the ultrasonic frequency can be comparable to the
characteristic frequency of the spin fluctuations. Then the singular part of the
response function W obeys the scaling relation



32 A. Pawlak

This type of singularity in the ultrasonic attenuation, which we shall also call
Murata—Iro—Schwabl behaviour, has been so far obtained by neglecting the energy
density fields [3, 4] and it is believed to take place in magnetic metals [1, 2].
Note, however, that the coefficient W2 in this limit is equal to 2(g — wfCs) 2 to be
compared with 2g 2 in the model where the coupling to the energy fields has been
neglected [4].

However, if the reduced temperature is not extremely small there may be a
competition between the first and the second term in Eq. (4.2). For t > gross with
tcross = (α 2 mys/4K4v 2vCsΓ) 1/(zv—α) the weak-singularity term dominates and

Such behaviour was first obtained by Kawasaki [6]. He postulated phonon-spin-
-energy coupling in order to explain extremely small sound attenuation exponents
observed in magnetic insulators. Note, however, that our scaling function PP dif-
fers from the classical relaxational function of Kawasaki. What also arises from our
analysis, is that such behaviour is generated even if there is no direct coupling of
the sound mode to the energy-density fields, and that it cannot be truly asymptotic
as both terms (4.3) and (4.4) are . proportional (in the w —> O limit) to the square
of the same coupling constant g so even if g = O the strong singularity described
by Eq. (4.3) is still present and become dominant for sufficiently small t. The
dominance of a given type of behaviour does not depend on the relative strength
of the coupling constants g and w but rather on the ratio of the bare relaxation
times γsm/CsΓ and also on the ratio of v to its fixed point value v* ^ (α/v)K4 1.
Slow spin-lattice relaxation (and/or fast decay of spin fluctuations) together with
the strong coupling v favour the Kawasaki term.

It should be noted that the amplitudes of the Murata—Iro—Schwabl as well
as the Kawasaki term are proportional to the same coupling constant g 2 only in
the limit w = w = O. For finite w or w both amplitudes begin to differ from each
other and become frequency dependent as can be seen from the expressions for the
coefficients W1 and W2. For example W1 is not longer equal to W2-2ω2 | b| 2 g 2 . To be
exact this frequency dependence (except 2ω2IbI2g2 term in W2) of the coefficients
Wi results from the inclusion of the lattice-energy field to the model in which spins,
phonons, and spin-energy modes interact. The nonuniversal frequency-dependent
coefficients may be useful in making comparisons with experimental results.

4.2.2. High-frequency region

As the sound frequency increases, w/m approaches unity and the denomina-
tor in Eq. (4.1) becomes singular (we assume vt —αΦ  » 1) and W2 (in which now
the term 2g 2w 2|b|2|dominates) is becoming to be much greater than Wl. In that
case a new type of sound attenuation behaviour is observed

which can be obtained from the one described by Eq. (4.3) by a simple replace-
ment a 	 —a, 	 0-1 and g —* g. The sound attenuation exponent being



Theory of Critical Sound Attenuation ... 33

equal to zv — a, in this regime, is smaller from the value v -F a suitable for
the Murata—Iro—Schwabl behaviour, but it is still much larger than 2a charac-
terising the Kawasaki singularity. In this new regime the frequency of the sound
mode is much higher than the spin-energy relaxation frequency, so contrary to the
low-frequency region described by Eqs. (4.3) and (4.4), now the local temperature
of the spin system is not able to follow alternate hot and cold temperature varia-
tions produced by the ultrasonic wave. One can say that we have here some kind
of adiabatic sound propagation.

As follows from our analysis, on increasing the sound frequency we should
observe, in principle, a crossover from Murata—Iro—Schwabl behaviour to the adia-
batic behaviour, given by Eq. (4.5), in magnetic systems with a positive specific-heat
exponent. The crossover should occur for a frequency of an order of inverse of the
spin-lattice relaxation time. The latter quantity plays the key role in the process
of Curie-point writing in magneto-optical recording so it has also a technological
importance. Unfortunately, there are very few experimental methods able to mea-
sure very short spin-lattice relaxation times in magnetic metals. Thus the suggested
ultrasonic experiments in which the crossover frequency is measured should pro-
vide an interesting new tool to probe the spin-lattice energy transfer rate.

4.2.3. Comparison of the adiabatic limit with critical ultrasonic attenuation in
binary mixtures and liquid 4 He

The analytic relation (4.5) resembles the corresponding asymptotic formulas
for sound attenuation in binary mixtures [13-15], where the sound attenuation
exponent is also equal to v — a. For high frequencies Eq. (4.1) can also be trans-
formed into the formula

which is identical in form to the expression used by Ferrel and Bhattacharjee [16]
for the ultrasonic attenuation near the .\-transition in liquid helium (although the
specific-heat exponent is very close to zero for such systems)

where CFB(t, w) is a phenomenological frequency-dependent specific heat. Com-
paring Eqs.(4.6) and (4.7) we get the correspondence between these equations by
interpreting

as a frequency-dependent specific heat in the Ferrel—Bhattacharjee sense, where as
usual we put k = O. The function CS (t, w) can be relatively simply calculated, as
LA does not contain the details of the dynamics. A very similar identification, giv-
ing the statistical meaning to CFB(t, w), was also made by Pankert and Dohm [17]
in the case of 4 He.

The adiabatic formula (4.6) shows a close analogy to the critical sound at-
tenuation in two quite different systems belonging to different universality classes
and in the case of 4 He even the order parameter dimensionality is different, n = 2
and a ^. O. It may suggest that as concerns the adiabatic sound propagation this
kind of singularity may be quite common in the critical systems where the order
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parameter is coupled to the energy and sound mode by two different coupling con-
stants. The exception is the gas—liquid system but there, as was noted by Pankert
and Dohm [17], the order parameter itself is proportional to the energy and there
is only one static coupling between the order parameter and the sound variable.

4.3. Regime II

4.3.1. Low- and high-frequency regions

tThe rare case m » 02 was studied in details in Ref. [18].
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can be identified as the Kawasaki term for W « 1 (CLO(w) » CS (t, w)) and
the second as the Murata-Iro-Schwabl one. The crossover temperature tcross =

2 	 1/(zv—α)
( 4x,α2 ćs ) 	 depends mostly on the ratio of bare relaxation frequencies
ws/Γ. The smaller ws/Γ the smaller gross and the larger the critical region domi-
nated by the Kawasaki term. In the opposite case Co » 1, CLO(w) « CS (t, w) and
ImCĄ(t,w) CŚImΔCs (t,w)/|Cs (t,w)| 2, i.e. the adiabatic limit is recovered.

The situation described above may be also superimposed by the effects as-
sociated with the crossover in the specific heat CS (t, w), because the expression
for CS (t, w) = Cs(1 -I- vt-αΦ) may not display the required t - c' singularity in the
physical region of interest (if v is very small). Then, for example, the measured
effective sound attenuation exponent in the Kawasaki region will be much smaller
than 2a, sometimes close to zero.

5. Summary

We have performed a detailed analysis of the critical sound attenuation in
magnets. The relaxation of spin-energy to the lattice has been fully taken into
account in the prediction of the temperature and frequency dependences of the
acoustic self-energy. The important point here is that the acoustic self-energy is
reducible with respect to the energy propagators. We were able to express Σ (k, w)
in terms of the four-spin response function (ΓS2_k,_ωS ,ω)LA of the idealised,
phonon- and energy-free model A. The last quantity can be relatively easy calcu-
lated by the renormalisation group method. We have shown that the interpretation
of sound attenuation experiments in magnetic systems near their critical points
is complicated due to the occurrence of several different regimes, depending on
whether or not the energy exchange between the spin and the lattice system is
important at the frequency of interest. In the low-frequency region, two kinds
of critical behaviour described by Eqs. (4.3) and (4.4) compete with each other.
In general their weights are frequency dependent, however, in the limit w -* O
they have a common prefactor proportional to the square of a combination of the
coupling constants g and w, and their relative ratio is determined mainly by the
ratio of the bare relaxation frequencies ws/Γ. The high-frequency or adiabatic
limit is determined completely only by one coupling constant g — describing the
interaction of sound mode with two spin fluctuations. The dynamic scaling func-
tions for these three types of singular behaviour are calculated within the one-loop
approximation.

Another point of interest is the possibility of expressing the acoustic self-energy
by a suitable frequency-dependent specific heat in regime II. We have shown that in
the case of one coupling g or w f Cs (1- a) being much stronger than the other, the
acoustic self-energy can be very well approximated by the specific heat CĄ(t, w) or
CĄ(t, w), the net specific heats for the process of equilibration between the lattice
and spin subsystems or in the latter case between the noncritical background com-
posed of the lattice degrees of freedom plus the noncritical short-wavelength spin
fluctuations and the critical subsystem composed of the critical long-wavelength
spin fluctuations. The difference in definitions of CĄ(t, w) and CĄ (t, w) comes from
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slightly different ways the couplings g and w f Cs (1— a) couple the acoustic phonon
to the fluctuations of the order parameter.

A similar analysis is also possible for the magnets with the order parameter
dimensionality greater than one. For example Eq. (3.11) is still valid there. How-
ever, the specific-heat exponent a is negative in X—Y and Heisenberg systems,
therefore, the scaling behaviour of the Kawasaki as well as the adiabatic limit will
change.

Appendix

The decoupling transformations

In this Appendix we present Gaussian transformations decoupling the spin
and the spin-energy as well as lattice-energy fields in the Lagrangian. Similarly to
Eq. (2.8), which decouples es, es from eL , eL we decouple the sound mode from
the spin and the energy fluctuations by the shift of variables
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Finally, we apply the transformation
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