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The unbound-state solution of the Schrödinger equation is examined
for the potential that is defined as the sum of two  δ'-functions of non-equal
strengths. The analytical expression for the transmission  coemcient is derived
from the solution. The transmission  coemcient has an absolute maximum
at the zero wave number. Further, the transmission  coemcient is shown to
exhibit relative maxima and minima. Moreover, it is proved that the trans-
mission coemcient in its relative maxima is larger and in its relative min-
ima is smaller than the transmission coemcient for the corresponding single
δ' -functiοn potential.

PACS numbers: 73.40.Gk, 73.20.Dx

l. Introduction

Transmissions through a one-dimensional double-barrier structure have ex-
tensively been studied from the viewpoint of both the design technology [1] and
the fundamental physics [2]. With the progress of the fabrication technique, the
transmission through such structures has become a physical reality. Modern coin-
puters now allow problems of the transmission through realistic potentials to be
solved numerically with a relative ease. However, an analytical solution of the
transmission problem is still of an instructive value, since it enables one to get
an insight into phenomena which typically take place. There exists a very simple
archetype of a double-barrier structure, namely a double delta barrier. The trans-
mission through a symmetrical double delta barrier was thoroughly studied by
Galindo and Pascual [3]. The study of the transmission through an asymmetrical
double delta barrier was carried out by the author [4].

The δ-fυπctiοn potential belongs to a family of point interactions in one-
-dimensional quantum mechanics [5]. Α point interaction is such that it is zero
everywhere except at a given point x = s0, where x represents the spatial variable.
The most familiar of the point interactions is the  δ interaction that can be written
in the form of the potential V(x) = gδ(x — s0), where δ(x) is the Dirac delta
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function and g is its strength. The wave function ψ(χ) of a particle that has
the mass m and that moves in the given potential V(x) is subject to the two
boundary conditions at the point x = x0, namely ψ(x0 + 0) = ψ(s0 — 0) and
ψ'(x0 + 0) — ψ'(x0 — 0) κψ(x0), where κ 2mg/12 and ħ is the reduced Planck
constant [3, 5, 6]. The first boundary condition expresses the continuity of the wave
function, the second one the discontinuity of its first derivative ψ'(s) = dψ(s)/dx
at the point s = χ0.

Another of these point interactions is the so-called δ' interaction. It has,
however, little resemblance to the first derivative of the Dirac delta function
δ'(x — χ') = dδ(s — x0)/dx. With the δ' interaction at the point x = s0, it is
understood that the wave function  ψ(x) satisfies this set of the boundary con-
ditions ψ(s0 + 0) — ψ(x0 — 0) = λψ'(x0) and ψ'(x0 + 0) = ψ'(x0 — 0), where
λ = 2mg/12 and g is the strength of the δ' interaction [5]. This means that, while
the derivative ψ'(s) is continuous, the wave function itself  ψ(x) is discontinuous.
These two boundary conditions are to be interpreted as the device that leads to
the definition of the δ' interaction of the strength g at the point x S0. A positive
value of the strength corresponds to a barrier, while a negative value corresponds
to a well.

The purpose of this paper is to present a pedestrian treatment of the trans-
mission through a potential that is formed of the two δ' interactions. For this pur-
pose, the Schrödinger equation is solved for such a potential and soine attributes
of its transmission coefficient are presented briefly.

2. Solution of the Schrdinger equation

Thus, the solution of the Schrddinger equation is to be obtained for a poten-
tial that is defined as the sum of the two δ' interactions of the different strengths
gi and 92 The δ' interactions are supposed to be situated at the points x = —α
and x = α, where 2α is the distance between them. Evidently, the unbound-state
solution of the Schrödinger equation has the form of the plane waves moving froin
the left to the right and vice versa, i.e.  ψ(x) = ΑI e+ikx +ΒIe if x < —α, ψ(x) =
Απe+ + Βπe if —α < x < α and ψ(s) = ΑIIIe+ikx+ ΒIIIe if α < x, where
ΑI, ΒI, ΑII, Βπ, AIII and BIII are the amplitudes of the two waves in three different
regions. The positive wave number k is introduced by the relation Ε = 12k2/2m,
where Ε is the energy of the particle. The boundary conditions can be written in
the transfer-matrix form
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where λ1 = 2m91/ħ2 and λ2 = 2mg2//12. It is easy to obtain that det Μ(II,I) = 1
and detM(III,II) = 1. The two consecutive transfers are to be joined into one

It is easy to see that det 111(111,1) = [1 — r(k)r*(k)]/(k)*(k) = det Μ(III,II)
xdet Μ(II,I) = 1.

The two new-introduced quantities  t(k) and r(k) enable one to express the
relation between the amplitudes in the first and third region in this simple form

Thus, the wave function in the first and third reiοn is. resDectivelv, of the form

Obviously, the quantities  i(k) and r(k) represent the transmission and reflection
amplitude, respectively (actually, r(k) is the reflection amplitude from the left and
_(k)r* (k)/t*(k) is the reflection amplitude froin the right, they differ only in a
phase). The transmission coemcient is defined by T(k) «k)t*(k). The reflection
coefficient can be obtained from the well-known relation R(k) = r(k)r*(k) =

1 — i(k)i*(k) = 1 — T(k). Its validity for the transmission through the double
δ'-functiοn potential has been verified here.

3. Transmission cOefficient

After the straightforward algebra, one obtains the transmission coefficient
for the double δ'-function potential in a close form

:

	In the limit α → 0, the two δ' interactions join into the single δ' interaction.
Thus, lima..0 T(k) = 4/[4 + k2(λ2 + λ1)2] = Τ0(k), where Τ0(k) is the transmis-
sion coefficient for the single  δ'-function potential of the strength 92  + g1. It is

: 	understood that for λ2 = Ο or λ1 = 0, the expression for T(k) is also reduced
to the transmission coefficients for the corresponding single  δ'-functiοn potential.
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The transmission coefficient for the δ'-fυnctiοn potential has an interesting at-
tribute, namely limk_0 T(k) = limk0 Τ0(k) = 1. Thus, the δ'-function potential
is ideally transmittable for a particle with the infinitesimally small wave number
k. On the other hand, T0(k) = 0. Thus, the single δ'-function potential is
untransmittable for a particle with the large wave number k.

When the two δ' interactions are of the same strength g, i.e. when g =
g1 = g, the expression for T(k) is transformed into the transmission coefficient for
the symmetrical double δ'-fυnction potential

where λ = 2mg/1. Evidently, the transinission coefficient  TS(k) has an infinite
nuinber of absolute maxiina and relative ininima. The maxima take place at all the
positive values of the wave number k that obey the following resonance condition:
2 cos(2kα) — λk sin(2kα) = 0.

Apparently, the transmission coefficient for the asymmetrical double  δ'-func-
tion potential T(k) has also an infinite nuinber of maxima and minima. It is also
clear from Fig. Ι that there do not exist ideal transmissions through the asymmet-
rical double δ' barrier or the asymmetrical double  δ' well for a particle with the
non-zero wave number k. Generally, transmissions through asymmetrical doub-
le-barrier structures or asymmetrical double-well structures are not ideal. A trans-
mission through the asyinmetrical double  δ'-function potential would be ideal, if
two independent resonance conditions were satisfied simultaneously. One of them is
the maximum condition for the peak value (λ2 +λ1) cοs(2kα)—λ2λιk sin(2kα) = 0.
It strictly depends on the strengths of the  δ' interactions. The other is the so-called
phase-difference condition sin(2kα) = 0, thus 2kα = rnr and n = 1,2,3,... It has
nothing to do with the shape of the two obstacles a particle transmits through (in
the present case, an obstacle is represented either by a  δ' barrier or a δ' well). The
phase-difference condition is identical with the  eigenenergy condition of a particle
in an infinite rectangular well of the width 2α [3, 6]. It requires that the wave
phase after the second reflection in the region between the obstacles is identical to
the phase of the wave just transmitted through the first obstacle. Then, the ampli-
tudes of the forward and backward waves in the region between the obstacles may
be emphasised to reach a maximum value. These two resonance conditions can
be satisfied simultaneously only in the case of the transmission through the skew
symmetrical double δ'-functiοn potential, i.e. when λ2 = —λ1. Thus, only trans-
missions through the symmetrical (λ2 = λ1) and skew symmetrical  (λ2 = —λ1)
double δ'-function potential can be ideal for a particle with the  non-zero wave
number k.

The exact positions of extremes of the function T(k) can be found only
by numerical computations. However, it is possible to find two  eq1ιatiοns that
approximately determine their positions. To find them one has to differentiate the
function T(k),
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Fig. 1. The transmission coemcient for the asymmetrical double δ' barrier (the full
curve) and the asymmetrical double δ' well (the dashed-dotted curve): (a) ΙλιΙ =
πα/4, 1λ21 = πα/2; (b) ΙλιΙ = πα/4, 1λ21 = 3πα/4; (c) │λ1│= πα/4,1λ21=πα.The
dashed curve is the transmission coemcient for the single δ' barrier and for the single δ'
well with the parameter λ1 + λ2.

Thus, the relative maxima of the function T(k) approximately occur at all
the positive values of the wave number k obeying the maximum condition for the
peak value. When this condition is satisfied, the function T(k) takes the form

One easily sees that the function  Tmax(k) is identically equal to unity when the
transmitted structure is symmetrical or skew symmetrical. The asymmetry always
decreases peaks in the transmission coemcient. Further, one obtains that Τ0(k) <
Tmax(k), if Ο < λ2λ1(4 + λ2λιk2). The latter condition is always satisfied in the
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case of the transmission through the double δ' barrier and the double δ' well, i.e.
when 0 < λ2λ1. If λ2λ1 < 0 (a well—barrier structure), the latter condition requires
4/(—λ2λ1) <k2.

The minima of the function T(k) should approximately occur at all the
positive values of the wave number k obeying the minimum condition for the
valley value (λ2 + λι) sin(2kα) + λ2λ1k cos(2kα) =  0. Provided that it is satisfied,
the function Τ(k) can be arranEed into this form

It is easy to see that Tmin(k) < T0(k).
Suinmarising, the transmission coefficient for the double  δ'-functiοn potential

in its minima is smaller and in its inaxima is larger than the transmission coefficient
Τ0(k), i.e. Tmin(k) < Τ0 (k) < Tmax(k), where T0(k) is the transmission coemcient
for the single δ'-function potential arisen by joining the two δ' interactions of the
given double δ'-function potential. Thus, there exists some constructive as well as
some destructive interference between the waves just transmitting through the first
δ' obstacle and those being reflected off the second one. Both the functions  T(k)
and Τ0(k) have the same value when one of the following intersection conditions
is satisfied: .

They determine abscissae of the intersections of the curves that represent the
functions T(k) and Τ0(k). The second equation is the familiar phase-difference
condition.

In the case of large values of the wave number k, i.e. when 1 « kα, the
maximum condition for the peak value reduces to the phase-difference condition
sin(2kα) = 0. The minimum condition for the valley value reduces to  cos(2kα) = 0.
Both the conditions are independent of the strengths of the δ' interactions. In this
case, the inaxima of the function T(k) are approximately at the values k = nπ/2α
and its minima are approximately at the values k = (n+ 1/2)π/2α, where n's are
large positive integers. Thus, the function  T(k) finally oscillates between the two
limit values

and

The first intersection condition also reduces to the phase-difference condition at
the large values of the wave number. Therefore, the curves depicting the functions
T(k) and Τ0(k) finally intersect just at the points, where the function T(k) has
its maxima. This means that there are very sharp peaks in the function T(k). In
general, the double δ'-function potential is also  untransmittable for a particle with
the large wave number k. Only particles with the wave numbers k nπ/2α can
transmit through the double  δ'-functiοn potential.

In Fig. 1, the transmission coefficient  T(k) is drawn as a function of the wave
number k for different values of the dimensionless parameters λ1α and λ2α. These
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Fig. 2. The transmission coemcient for the symmetrical double δ' barrier (the full
curve), the symmetrical double δ' weΠ (the dashed-dotted curve) and the symmetrical
well—barrier structure (the dashed curve). All the curves are drawn for ΙλιΙ =  1λ21 =
πα/4.

curves demonstrate the existence of relative maxima and minima in the transmis-
sion through an asymmetrical double  δ'-functiοn potential. It is clearly seen that
peaks become narrower as the wave nuinber increases since the transmission prob-
ability through each of the δ' obstacles decreases with the increase in the wave
number. The sharpness of a peak also increases with the simultaneous growth of
both the parameters. When only one of the parameters grows, peaks become lower.
Generally, the asymmetry always decreases peaks in the transmission coefficient.
Ποwever, the effect of the region between the obstacles exists even when one of
them is much larger than the other. These are the characteristics proper to the
transmission through an asyinmetrical double δ' barrier or an asymmetrical dou-
ble δ' well. In Fig. 2, the transmission  coemcients for the symmetrical and skew
symmetrical double δ'-function potential are shown.

4. Comments

On the one hand, the δ-function potential is frequently employed in the
solid state physics. On the other hand, the  δ'-fυnctiοn potential does not seein to
be widely known. Unfortunately, it cannot be visualised and is defined only by
the boundary condition. However, the transmission coefficient for it has unusual
attributes.

As was mentioned, the transmission through the δ'-fυnctίοn potential is ideal
for a particle with the infinitesimally small wave number. In general, the trans-
inission coefficient does not equal unity for the zero wave number. Further, the
transmission coefficient for a finite potential and also for the δ-function potential
approaches unity as the wave number goes to infinity. However, the transmission
coefficient for the δ'-function potential rapidly goes to zero at large values of the
wave number. Nevertheless, the transmission coefficient for the double δ'-function
potential still has well pronounced peaks at the certain values of the wave number.
Such transmission peaks occur when an integer number of the half-wavelengths
fits into the region between the δ' obstacles. They are to be attributed to the
so-called resonant transmissions that are a result of the constructive interference
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of the waves in the region between the 5' obstacles. Thus, the resonant transmis-
sions through the double δ'-function potential are a plausible quantum-mechanical
example of the constructive interference of the waves.  Α device with such a per-
formance could be used as an efFective selector of particles with the given energy,
especially in the high-energy region.
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