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We deal with the following question: how can the composite nature of a
boundary condition formulated for a periodically inhomogeneous surface and
involving the composite surface parameter, be treated analytically? We show
that when the appropriate Fourier transformation is applied, the composite
boundary condition reduces to a specific eigenproblem condition, which con-
stitutes the spectrum of eigenvalues of an “effective” surface parameter, a
novel quantity we introduced to account for the nonhomogeneity of the sur-
face.

PACS numbers: 68.35.—p, 02.60.Lj

1. Introduction

Recent years witnessed considerable interest in the study of properties of
composite materials like photonic [1-3], phononic [4-8] or magnonic [9-11] crys-
tals. Some of these materials consist of periodic lattice composed of identical
parallel rods disposed in a homogeneous medium. If such structures are lim-
ited by planes perpendicular to the axis of the rods, inhomogeneous surfaces are
created; the inhomogeneity of the surfaces in question has a periodical topol-
ogy, since the cross-sections of the rods form a two-dimensional lattice. In such
truncated (two-dimensional) periodic media (see e.g. [12]) the proper treatment
of the inhomogeneous surface conditions becomes essential.

The problem resembles in some sense those problems, which have already
been treated numerically in the literature, namely, we have in mind the problem
of acoustic waves propagating at the periodically corrugated interface [13] or those
associated with the surface of a substrate supporting a periodic array of wires [14].
To our best knowledge, there has been no successful attempt in the literature up
to now, of finding an analytical way to solve the problem of inhomogeneous surface
conditions. In this paper we propose an original treatment of periodically inhomo-
geneous surface conditions, by having recourse to the Fourier transformations.
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2. The periodically inhomogeneous surface

We consider the semi-space bounded by a flat surface (z,y) with the z-axis
perpendicular thereto. We express the radius vector in the form r = [r, 2], where
the two-dimensional vector 7y defines the position of a point in the plane parallel
to the surface, and let the coordinate zo determine the disposition of the sur-
face limiting the semi-space. Let us also assume the physical medium filling the
semi-space as homogeneous (with regard to some property) to the exception of
the surface which we assume as periodically inhomogeneous. We shall postulate
that the function U(ry;2) describing the physical process of interest shall fulfill
the following boundary condition on the surface:

Qg%;"—’—z—) +a(ry; 2)U(ry;2) =0 for z = 2. 1)
Equation (1), as the equation which has to be fulfilled on the surface plane z = zo,
is a boundary condition (of the Sturm-Liouville type) with a boundary parameter
a(ry) being the following function of position:

a(r”) = aIS'(r”) +ap [1 - S(r")] . (2)
Thus we assume the surface to present a two-component composite structure (see

Fig. 1) consisting of the space M to which we shall refer as the background (“ma-
trix”) and spaces I periodically disposed thereon (“impurity”). The function S(ry)

Fig. 1. A two-component composite surface structure; grey areas are periodically dis-
tributed, forming a square two-dimensional lattice (black points).

occurring in Eq. (2) takes the value 1 inside I and 0 elsewhere. Thus the surface
parameter is a periodic jump function taking only two values, namely a; and ayz,
across the surface. The periodic nature of the coefficient a(ry) allows us to expect
that functions satisfying Eq. (1) have, in general, the form of a Floquet function
with U(ry; z) being a periodic part (factor) of this function. Therefore, we can as-
sume that U(ry; 2) is a function periodic on the surface and with R denoting the
positions of the regions I in the regular lattice (in Fig. 1 — a quadratic lattice) and
with G' denoting the vector of the lattice reciprocal to R — we can perform the
following Fourier transforms leading us into the space of the reciprocal lattice G:

a(m) =Y (@S, (3a)

G
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U(ry;2) = Z U(G;2)elC 7, (3b)
Gl
Insertion of (3a,b) into (1) leads to the following equation:
!
iG'~1’" G -¢@ . aU(G ’Z) —
%;e ; a( W (G;2) + —5=| =0. (4)

Since Eq. (4) has to be fulfilled for any 7y, the expression in brackets has to vanish
identically leading to

oU(G; z)

——37—+%:a(c;- GU(G;z) = 0. (5)

It is noteworthy that Eq. (5) has to be fulfilled for any G, so that we have arrived,
in fact, at an infinite set of equations corresponding to an infinite number of

vectors G (we shall also keep in mind that summation over G’ involves a vector
G as well).

3. The notion of an effective surface parameter

We shall restrict our further considerations to the case when the transform
U(G; 2) is factorizable with separation of the variables (this case comprises a wide
class of physically meaningful problems):

U(G;2) = u(@)u(z). (6)
On insertion of (6) into Eq. (5) we get

Z [a(G — Gu(2)] w(G') + 613(;) u(G) =0 (7a)
pen

or, equivalently,

, p 1 6u(z)]
- —— 1 y(G) = 0. 7b
S (6= @)+ 5752 | w® (7b)
We now introduce the notion of an effective surface parameter, defined as follows:
1 Ou(z)
= 2% 8
A u(z) 8z ' ®

so that Eq. (7b) becomes

D a(G- G)u(G) - Au(G) =0. (9)

Gl
Thus, the effective surface parameter can take only values that are eigenvalues
of the preceding eigenproblem (9). Significantly, the set (9) does not involve the
variable 2z, so that the spectrum of eigenvalues of the surface parameters is in-
dependent of the “position” of the surface and is completely determined by the
composite structure of the surface expressed alone by the transforms a(G — G').

The dimensionality (the number of equations) of the set (9) varies in accor-
dance with our choice of the basis of vectors G. Of course, strictly, (9) should be
taken as an infinite set of equations and therefore those are the eigenvalues A4,
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we obtain from the condition of the vanishing determinant of (9). However, for
practical reasons, we shall be using a finite basis of values G; the number of the
vectors forming the G-basis is denoted by N. We can treat, at the same time,
the number N as the order of the approximation applied; thus, we can operate in
the first, second, third and higher approximations (N = 1,2,3...). We establish
the vectors G as ordered according to their growing length, thus, with Gq as zero
vector we have the following notation:

GO = 0; Gl; Gg; G3; oo GN—l-
Let us first consider the lowest approximation N = 1.
In a first approximation (N = 1) we take into consideration only one vector

of the reciprocal lattice, namely Go = 0. For Gy, Eq. (9) simplifies considerably,
namely it takes the following form:

a(0)u(Go) — Au(Gy) =0, ‘ (10)
which leads directly to but one “eigen”-value of the effective surface parameter
A = a(0) (11)

and only a single characteristic equation (derived from (8)), which has to be fulfilled
at the surface z = z:

du(z)

dz

Therefore, the lowest approximation (with N = 1) gives one averaged value of the
surface parameter, equal to the lowest, most strongly leading transform a(0); in
other words, in this approximation the composite nature of the surface has, as it
were, decayed and been replaced by an averaged value of the surface parameter
(homogeneous for the surface as a whole).

+ Au(z) =0 for z=z. (12)

4. Effective surface parameter eigenvalues

The further steps bring us closer to the initial “mosaic” structure of the
surface, since the expression for the eigenvalues of the surface parameter come
to contain higher and higher Fourier components a(G&). In the next step of the
approximation (N = 2) the G-basis consists of two vectors, Gy = 0 and Gy, and
Eq. (9) leads to two equations respectively, namely

[¢(0) — A) u(Go) + a(—G1)u(Gy) = 0, (13)
a(G1)u(Go) + [a(0) — A]u(Gy) = 0.

The solvability condition for this set leads to two eigenvalues of the effective surface
parameter

A1y = a(0) F Va(Gr)a(—Gy). (14)
Thus we obtain two characteristic equations of the type (12) on inserting therein
respectively, A; and As in place of A.

We readily extend our considerations to the case of arbitrary N establishing
the rule that the selection of a basis of N vectors leads to N eigenvalues of the
effective surface parameter, to be denoted by

An; n=1,2,...N. (15)
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One may say that the homogeneously-averaged value of the surface parameter
obtained in the first approximation, undergoes now consecutive splitting into
2,3,...N values, thus implying our consecutive approach to the fulfilment of the
rea.hstlc (i.e. comp051te) surface condition. For each of the obtained eigenvalues
Ay the following boundary condition has to be fulfilled:

6u(z)

0z
This result indicates that our treatment of the composite surface conditions re-
sides in transforming the initial composite surface condition (1) into an equivalent
system of homogeneous surface conditions of the type (16) taking account of the
multiple nature of the effective surface parameter expressed by its eigenvalues
spectrum A, . Thus, the rest of our work reduces to the standard analysis of the
boundary problem with homogeneous surface, well known from the literature.

In the asymptotic approximation (for N — co) the single effective parameter
value (11) “attached” to the homogeneously averaged surface goes over into a
band composed of an infinite number of sub-values (15). Thus, the higher the
multiplicity N considered, the closer we approach to the fulfilment of the realistic
surface conditions. Practically, this amounts to the search for a sufficiently great
N ensuring good convergence of the results obtained.

+Anu(z) =0, n=12,...N. - 1e)

5. Outlooks

The essence of the present paper resides in showing that the composite
boundary condition (1), on subjection to the Fourier transformation, reduces to
a specific eigenproblem (9) the eigenvalues of which constitute the spectrum of
permitted values of an effective surface parameter, a novel quantity which we in-
troduced to replace the composite surface parameter. In terms of effectivity, the
procedure outlined above can be said to convert the composite surface into an
equivalent “multiple homogeneous surface”. A highly interesting aspect of this
method resides in its future application to the study of boundary conditions in
thin films and multilayers with periodically inhomogeneous surfaces or interfaces.
These matters will be dealt with in separate papers.
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