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A NEURAL NETWORK MODEL OF AN ISING SPIN
GLASS

K.F. WILSON AND D.J. GOOSSENS
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The behaviour of an Ising spin glass (S = 1/2) with infinite range
interactions is modelled using a numerical simulation based on a neural net-
work. Thermodynamic variables are defined on the network, and are found
to obey the Thouless-Anderson—Palmer theory when the applied magnetic
field is zero. When a magnetic field is applied along the spin direction,
complex field-dependent behaviour appears, including a state in which the
Edwards—Anderson order parameter is independent of temperature below
the critical temperature.

PACS numbers: 75.10.—b, 75.10.Nr, 84.35.+i

1. Introduction

The statistical mechanics of spin glasses have been carried over into the
study of neural networks [1]. Here, we explore neural networks as a means of
modelling the spin glass phase. Thermodynamic variables such as magnetic sus-
ceptibility, magnetisation, and internal energy are defined for the neural network,
and their evolution explored as functions of applied field and temperature. We
analyse the neural network behaviour in light of the work of Thouless, Anderson,
and Palmer [2], which has become of interest in neural networks [3] and which is
of continuing interest in physics.

A neural network model is computationally simple with few assumptions.
The network used was the Hopfield model [1] with infinite range symmetric in-
teractions. The network consisted of N units with Jij = Jji for i, j = 1, 2, ... , N.
Each unit in the network had two possible states, ±1. The initial network state
was created by storing randomly generated patterns of N bits ξμa (i = 1, 2, ... , N;
μ = 1, 2, ... , p), where p was the number of patterns to be stored. The Jií were
then generated by [4]
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The energy was calculated from a conventional spin Hamiltonian of the form

where hext is the external field and Si is the state ±1 of the i-th unit.
The simulations were written in C++ on Silicon Graphics R1000 computers,

with N = 50, 200 or 800. All units were updated simultaneously at each time step.
Networks were allowed to evolve according to Glauber dynamics [5] for 200 time
steps, with magnetisation, M, susceptibility, χ, energy, H, and Edwards-Anderson
order parameter, q [6] being calculated at each step.

The thermodynamic variables were defined on the network as follows:

with energy being given by Eq. (2). Equation (4) was used rather than (Si (0)Si (t))
because it does not depend on the network initial state, and the synchronous
updating caused the network to relax very rapidly.

2. Results and discussion

At hext = 0, all quantities were found to obey the predictions of the theory
developed by Thouless, Anderson, and Palmer (TAP) [2] for Τ < Τc/2, with χ
depending linearly on Τ and q falling off with Τ2 . The TAP parameter, α, was
found to be 1.4 ± 0.3, agreeing with the expected value of 1.665 [2]. The entropy
was calculated by integrating Τ -1 dH, and agreed with expectation, with a limiting
value at high temperatures of 0.64 — very close to the expected value of 0.67 [7].
Hence, the simulation is useful quantitatively as well as qualitatively.

Close to Τ, q does not go to zero. Instead, q changes continuously from obey-
ing the TAP prediction at small Τ to being described by q = Μ 2 at Τ > T. This
was found to be independent of network size for all sizes investigated, suggesting
that the transition is intrinsically a high order transition rather than a first order
transition broadened by finite size effects.

The behaviour of q with Τ is shown in Fig. 1 for various hext. As ħext in-
creases, q falls more quickly with Τ, until at the critical field, hc , it is constant at
0.5 up to 0.8ΤC . This state occurs because the system is on the border between
falling into a spin glass state and becoming aligned with the applied field. Increas-
ing temperature makes the energy landscape of the network insignificant, so that
the only effective ordering is due to the applied field. This effect also falls off with
temperature, so that q approaches zero as Τ increases. As hext exceeds hc, it be-
comes strong enough to align the spins in the network regardless of the intrinsic
interactions, and so q becomes large and stays large, although again falling as Τ
increases. For fields greater than c , no spin glass phase is present, and the system
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is paramagnetic, with the spins aligned at low temperatures and becoming more
disordered as Τ is increased.

This sort of behaviour is due to competition between J and hext. At low
Τ and h ext , the system sits in a local energy minimum governed by Jij, with Τ
too small to bump the system out of that state. As Τ increases, the system is
thermally excited out of the local minimum and the spins are aligned by ħext; this
effect increases with Τ. At T> Τ, the system behaves paramagnetically.

Behaviour similar to that seen here was observed in [7], but we need no
complicated energy minimisation techniques, and make no assumptions beyond
the structure of the network. A further advantage of a neural network simulation is
that neural network concepts can be used to explore the behaviour of the spin glass
model. The idea of content addressable memory involves giving the network part
of a stored pattern and allowing it to evolve in order to retrieve the entire pattern.
Pattern recall can be measured by a bitwise comparison of the final network state
with the stored patterns. Recall falls to zero at the spin glass  Τ  and h^, because the
recall phase of the neural network coincides with the spin glass phase of the spin
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system. Hence, the concept of recall can be used in exploring the phase behaviour
of the system. As recall cannot be tested if Jij are set randomly using a statistical
distribution, such an exploration is not possible using a conventional numerical
spin glass model.

For example, the effect of dilution was explored. As expected for a system
with infinite range interactions, the spin glass phase was very resistant to bond
dilution, persisting until over 98% of bonds were removed (Fig. 2).  Τ  was inde-
pendent of bond dilution until over 80% of bonds were removed, and c was even
more robust, remaining unchanged until over 90% of bonds were cut. Site dilution
removes the units which store the patterns, rather than the links between them,
so it is reasonable to expect it to have a stronger effect on recall.

The phase transition with applied field, in which Τ is held constant and the
applied field varied, is first order at Τ = 0, but becomes second or higher order
at non-zero temperatures. This is logical, as setting Τ = 0 removes statistical
uncertainty from the simulation.

3. Conclusions

Thermodynamic variables can be defined sensibly on a neural network, and
can be used to explore the behaviour of that network. The Hopfield net with
infinite range, symmetric interactions follows the theory of Thouless, Anderson,
and Palmer at low temperatures, and therefore acts as a model of an Ising spin
glass. The spin glass to paramagnetic phase transition is of high order, and depends
at most weakly on system size.

Neural network concepts such as memory recall were used to explore the spin
glass model. It was found that the critical field is more robust against dilution than
the critical temperature. The model showed a great deal of complex behaviour,
including a state in which the Edwards—Anderson order parameter is independent
of temperature, yet different from zero or unity.

This work forms the basis of an exploration into more complex spin glass
and neural network models.
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