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Numerical simulations of noise-free stochastic resonance and aperiodic
stochastic resonance in chaotic ferromagnetic resonance are presented. The
model, based on three-magnon interactions between the externally excited
uniform mode and pairs of spin waves, shows on-off intermittency. The rf
magnetic field amplitude is slowly modulated by a small periodic or aperi-
odic signal, and the output signal, which reflects the occurrence of laminar
phases and bursts in the time series of spin-wave amplitudes, is analyzed.
On variation of the dc magnetic field the signal-to-noise ratio of the output
signal and the correlation function between modulation and output signal
pass a maximum, which indicates the occurrence of periodic and aperiodic
stochastic resonance, respectively. The role of thermal magnon excitations in
the occurrence of this maximum is clarified. The results are compared with
experimental findings obtained in other types of intermittency.
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Stochastic resonance (SR) occurs in systems driven by a coherent signal and
noise where the noise intensity can be tuned in a way to maximize the coherence
of a properly chosen response signal [1]. The coherent signal is usually periodic. In
the case of an aperiodic signal the term "aperiodic stochastic resonance" (ASR) is
used [2]. SR appears in systems with two (or more) distinguishable states (e.g. in
bistable systems), in which the probability to find the system in one of these two
states is modulated by the coherent signal [3]. SR occurs due to the matching of two
time scales: the (mean) modulation frequency and the noise-controlled switching
rate between the two states. In chaotic systems, so-called "noise-free SR" can
be observed without external noise by tuning the chaotic dynamics through the
control parameters [4]. E.g. by varying one of the control parameters in systems
with intermittency one changes the mean duration of laminar phases and bursts,
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which play the role of the two states of the system, and tunes it to the (mean)
period of coherent modulation. Noise-free SR was first observed experimentally
in chaotic ferromagnetic resonance (FMR) [5], and numerical simulations of the
corresponding model were presented in Ref. [6].

In this paper we consider a numerical model of noise-free SR in the "coin-
cidence regime" of the first-order Suhl instability [7]. The uniform mode driven
by the rf field of frequency ω (close to its eigenfrequency ω0) decays into pairs of
spin waves (SW) with opposite wave vectors and frequencies ωk ω/2, as soon
as the rf field amplitude hT exceeds the threshold h. In our model the rf field
amplitude is slowly modulated with a signal of frequency ω 3 « ω, and only two
SW pairs are included to interact with the uniform mode. The equations of motion
for the weakly time-dependent complex amplitudes of the uniform mode α 0 and
of the spin waves αl and α2 read [6]

where n0,k, k = 1,2 are phenomenological damping parameters, Δω 0 = ω0 - ω,
Δωk = ω - ω/2, δ0,k = n0,k+iΔω0,k, ε = hT/hTthr r, V0,k are the respective
three-magnon coupling coefIicients and nth is the level of thermal excitation of SW.
In (1) all detunings, dampings, and amplitudes are dimensionless and normalized
to nιΡ, and the dot denotes the derivative with respect to rescaled time t' = n1t.

' In real systems we have n1 106 s-1 and th 10 -10 at the liquid helium
temperature [6]. Using the following parameters in our simulations: n0 = 1.25,
n1 Ξ 1.0, n2 = 0.8, Δω0 = —1.5, Δω1 = 3.0, Δω2 = 2.62, |V02|/|V01| = 0.754 [8],
the system (1) becomes chaotic for ε > 1.95. For ε < 3.02 we found on-off
intermittency [9] characterized by a sequence of laminar phases, during which
|α2| 0, and by chaotic bursts (Fig. 1) [8]. For ε > ε, |α2| decays to zero. Similar
behaviour was experimentally observed in chaotic FMR [10].

Assuming that the coherent signal i8 applied through amplitude modulation
of the driving rf field we set ε(') = ε0 + Af (t'), where ε0 = 3.01 and A = 0.15. The
function f(t') is either periodic in time, f(t') = sin(ω s t'), or aperiodic, f(t') = 0
or 1, where each of the two values is chosen at random every Δt's = 200. In contrast
to Ref. [6], where ε0 was used as a control parameter, here we chose the dc magnetic
field. Its variation results in a detuning of the eigenfrequencies and corresponds
in (1) to changes of Δω0 and Δωk. In order to model noise-free SR or ASR in
chaotic SW dynamics, we solved Eq. (1) numerically on variation of Δω0 (and
equal variation of Δω1 , Δω 2 ). The resulting time series for |α2| still shows on—off
intermittency (Fig. 1). To obtain a more distinct separation of both phases we
analyzed the distorted signal y(t') = 8(|0 2 | - 8), where Θ(.) is the Heaviside unit
step function and θ = 0.1 is an arbitrary but reasonable threshold for the burst.
Hence y(t') reflects the sequence of laminar and burst phases in the time series of
| 02|. It turns out that the mean duration of both phases is changed on variation of
the SW detunings. Since it is also modulated by Af(t'), the matching of the two
time scales necessary for noise-free SR can occur for the properly chosen Δω0.
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In order to characterize SR we used typical measures [1, 2]. For periodic
f() we evaluated the power spectral density S(ω) of y(t) and calculated the
signal-to-noise ratio (SNR) at ω = ω 3 vs. Δω 0 . For ASR with aperiodic f(t)
we evaluated the correlation function C1 between y(t) and f(t) vs. Δω 0 . These
measures are defined as follows:

where SN(ωs) is the noise background at ω s in the power spectral density, on which
the peak with the height S(ω s ) - SN(ω s ) coming from the periodic component of
y(t) is superimposed, and the brackets denote the time average.

The results of our numerical simulations of noise-free SR with periodic mod-
ulation f(t) are summarized in Figs. 2, 3, and with aperiodic modulation in Fig. 4.
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In Figs. 2, 3 a maximum of SNR vs. Δω0 can be seen, and in Fig. 4 a minimum
(instead of a maximum) of C1 vs. Δω0 (the latter appears because bursts of |α2|
occur most frequently when ε(t) is at a minimum). Such shapes are typical of SR
and ASR. In Fig. 2 the characteristic increase in SNR with decreasing ωs occurs
quite markedly (adiabatic limit [3]). In Figs. 3, 4 we have shown the influence
of thermal excitation of SW: the extrema of the SNR or C1 curves are broad-
ened and occur more distinctly. Thus, noise-free SR in experiments with on—off
intermittency in SW dynamics will appear due to the combined effect of internal
chaotic dynamics and weak thermal excitations of SW (the effect of th in other
kinds of intermittency is not necessarily so large [6]).

As an extension of the previous results [6], our pre8ent simulations are fo-
cussed on the dc magnetic field serving as the control parameter which determines
the "level of stochasticity" in nοise-free SR, while the coherent signal was applied
by modulation of the rf field amplitude. Noise-free stochastic resonance with pe-
riodic modulation of the rf field amplitude and variation of the dc field was also
observed experimentally in chaotic FMR on a different type of intermittency [5].
The results of our simulations are qualitatively similar to the results of this exper-
iment. Moreover, the modeling was extended to the case of ASR, which suggests
that experimental observation of nοise-free ASR in intermittent SW dynamics is
possible. In chaotic nonlinear FMR, low-dimensional models, though oversimpli-
fied, are usually in qualitative agreement with experiment. Thus the results of the
present paper, together with those of Refs. [5, 6], show that chaotic nonlinear FMR
is a useful tool for the experimental investigation of various kinds of nοise-free SR.
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