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Based on the triangular lattice and its depletions there are three simple
frustrated antiferromagnetic Heisenberg models in two dimensions. The first
two, the triangular and kagοmé lattices, have been examined in the recent
past. The triangular lattice seems to have a łong range order whereas the
kagomé does not show the long range order. But these results are still con-

' troversial. This work is concentrated on a third type of this lattice family
in order to improve the understanding of the connection between the long
range order and coordination number in low dimensional systems. Bets has
described the geometric properties of this lattice. It has a coordination num-
ber 5, which lies precisely between coordination numbers 6 and 4 of the other
two lattices. The low-lying spectra and the correlation functions of finite lat-
tices have been examined to discuss the possibility of a long range ordered
ground state in the I/7-depleted triangular lattice. The low-lying spectrum
is generated by an exact diagonalization, and the tower of states behavior
points to a long range ordered ground state.

PACS numbers: 75.10.Hk, 75.10.Jm, 75.40.Mg, 75.50.Εe

1. Introduction
The presence of a long range ordered (LRO) ground state in two-dimensional

spin-1/2 Heisenberg antiferromagnets is still an open question. Much attention has
been paid to frustrated systems since frustration is one mechanism to suppress the
ground state Néel order. One example is the frustrated antiferromagnet (AFM)
on the triangular lattice as a Bravais lattice. The study of the triangular spin-
-1/2 Heisenberg AFM goes back to early papers of Anderson [1, 2] who argued
that the ground state is a spin liquid. However, as a result of intensive studies
of this problem in the nineties (see e.g. [3-5]) it seems to be consensus that the
ground state of the triangular Heisenberg AFM is Néel-like ordered. That may
be related to the large number of neighbors per site. A candidate for spín liquid
behavior should have a small coordination number z and frustration. The quan-
tum Heisenberg AFM on the kagomé lattice has exactly these features and recent
investigations [6, 7] support the existence of a disordered ground state.

The aim of this paper is to study the spin-1/2 Heisenberg AFM on a regular
two-dimensional lattice with a coordination number z = 5, halfway between the
coordination numbers of the kagomé and triangular lattices.
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2. Depletions of the triangular lattice

It was shown in [8] that the regular depletion of the triangular lattice by
1/7 yields exactly a lattice with a coordination number z = 5. Like the kagomé
lattice the 1/7-depleted lattice is a non-Bravais lattice with a hexagonal unitcell.
But the number of sites in one unitcell is six. The 1/7-depleted lattice has a
6-fold rotational symmetry but no reflection symmetry. The kagomé lattice and
the honeycomb lattice can also be derived from the triangular lattice by depletion
of 1/4 or 1/3, respectively. The AFM on the honeycomb lattice is not frustrated and
we will not discuss it here. The 1/4- and 1/7-depleted lattices are two-dimensional
regular lattices containing only triangles and hexagons. According to the recent
conjecture given in [9] these lattices belong to the class of even-odd lattices and
are therefore candidates for the systems having a non-Νeel-like quantum ground
state.

3. Classical ground state

The ground state of the classical AFM on the triangular lattice is a three-
-sublattice Néel state with an angle of 2π/3 between spins of different sublattices.
There is no nontrivial degeneracy on the triangular lattice. For the kagomé lattice
there is a large number of nontrivial degenerated ground states which can be
divided into two main classes [10, 11]. The first type is the q = 0 configuration.
The second one is the x \ configuration. The corresponding planar states
where neighboring spins are rotated by 2π/3 also belong to both configurations.

The ground state on the 1/7-depleted lattice is planar and has three differ-
ent angles between neighboring spins. The angle between neighboring spins on a
hexagon is 5π/6. On each elementary triangle connected to three hexagons the
classical spins in the ground state make 2π/3 angles with one another. On the one
remaining bond the angle between spins is π/2 (see Fig. 1). Obviously, this ground
state has some relation to the three-sublattice Néel state of the triangular lattice:
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considering hexagons we have three sublattices of hexagons A, B, C with the an-
gle 2π/3 between corresponding spins of nonequivalent hexagons. The energy of
this ground state is -(√3+ 1)/5 per bond whereas the energy per bond for the
triangular lattice and the kagomé lattice is -0.5. Since the classical ground state
energy can be considered as a measure of frustration strength we argue that all
three lattices are almost equally frustrated.

4. S = 1/2 quantum case

We use an exact diagonalization of small lattices to get the ground state
and the low-lying levels for the 1/7-depleted lattice. This method was successfully
applied also to the triangular and kagomé lattices [3, 6, 7]. Using Sz and lattice
symmetries we are able to diagonalize finite systems up to Ν = 24 and partly
N = 30. Because of the lower symmetry compared with the triangular and kagomé
lattices the diagonalization of N = 36 is much more difIicult.

Only lattices with N being a multiple of 18 (N = 18, 36) fit to the classical
ground state configuration of the infinite lattice. Hence Ν = 24 and N = 30 are
less appropriate but they should be considered nevertheless. Though the lattice
is non-bipartite, similarly to the triangular and kagomé lattices we find a singlet
ground state and a level ordering with increasing S which fits to the Lieb-Mattis
theorem [12] for bipartite lattices. Figure 2 shows the spectra of the N = 18
and N = 24 lattices. The "tower of states" behavior E = S(S + 1)/I can be
clearly seen in both diagrams. The slope of this line goes rapidly to zero Ι α N.
This is a necessary condition to get a symmetry breaking ordered state for the
thermodynamical limit. Similarly to the triangular lattice and in contrast to the
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kagomé lattice the lowest levels are lying well on a straight line and there are no or
only a few states between the ground state and the lowest triplet excitation. The
nearest-neighbor spin—spin correlations are shown in Table. Analogously to the
classical case there are three different nearest-neighbor correlations corresponding
well to the classical ground state; for example the stronge8t one is placed around
the hexagons and the correlation (SiSj)di of classically perpendicular spins is very
small.

5. Conclusions
In conclusion, we consider for the first time the Heisenberg AFM frustrated

on a two-dimensional 1/7-depleted triangular lattice with a coordination number
of five. We find that the Heisenberg AFM on this lattice is more similar to the
Heisenberg AFM on the triangular parent lattice than to the Heisenberg AFM on
the kagomé (i.e. the 1/4-depleted triangular) lattice. This conclusion is based on
the analysis of (i) the classical ground state, (ii) the spin correlation, and (iii) the
low-lying energy spectra of finite lattices. We argue that our results may indicate
the possibility of a multi-sublattice Néel-like quantum ground state in a lattice
built by odd and even polygons.
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