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We study low temperature magnetic properties of transition metals. The
ground state spontaneous magnetization is calculated in a pseudopotential
approximation. In the calculations, the core electronic orbitals are approxi-
mated by asymptotic expressions. The magnetizations are calculated for uni-
form spin densities of valence (chemically active) electrons and in the Lind-
hard approximation. Our calculations of the Bloch wall parameter and the
magnon stiffness constant are based on a study of ferromagnetic and para-
magnetic phases. A simple Bragg-Williams approximation between energy
of spin polarization and the time-average of the spin moment per atom deter-
mines the "exchange coupling" (Heisenberg-like) for spin-polarized nearest
neighbour Wigner—Seitz cells. Ab initio numerical results of the spontaneous
magnetization, the Bloch wall parameter, and the magnon stiffness constant
are obtained for Fe, Co, and Ni.

PACS numbers: 71.15.Mb, 71.15.Ηχ, 75.30.Et

1. Spontaneous magnetization in a pseudopotential calculation
The density functional theory (DFT) [1, 2] recast the problem of the many-

-electron wave function in terms of the electronic density (or the spin densities) and
a universal exchange-correlation functional. A simplification is via pseudopotential
theory (see Perdew paper in Ref. [1]). For each atom a so-called effective core
potential or pseudopotential seen by the valence (chemically active) electrons is
introduced. A very simple but effective one is the Ashcroft pseudopotential, which
has applications to simple metals (see e.g. [3-5]).

The idea of a pseudopotential is to treat the valence electrons explicitly by
DFT as interacting particles in the field created by the ions. The Hohenberg-Kohn
variational equations for the real electronic system and in the pseudopotential
method have to be identical. This condition gives the pseudopotential and the
Kohn-Sham potential, VκS(r, σ), for the system of the valence electrons. An ion
acts on the valence electrons via the electrostatic potentials, a short-range repul-
sive component, V R (r, σ), and the exchange-correlation interaction. In the local
spin density approximations of the kinetic energy the repulsive potential has-the
following form:

(967)
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where n(r, σ) and n' (r, σ) are the spin densities of the core and valence elec-
trons, respectively. In the following, all equations are expressed in the atomic
units (1 = 1 au., electron mass = 1 a.u., electron charge = 1 au., the unit
length is 1 bohr and energy unit is 1 hartree = 2 Ry). In the calculations, the
core orbitals are approximated by asymptotic expressions [6]. Exact calculations
of close shells require the configuration interaction method. For valence electrons,
the Kohn—Sham potential has the following form:

Here, v(r - Rα ) is the electrostatic potential of the ion for the position Rα of
its nucleus. The term v(r - R 1 ) + VR (r — R ' , σ) in (2) is the pseudopotential of
the core ion. The next term concerns the valence electrons (or itinerant electrons
in metals) and is the Hartree (or direct, or classical) Coulomb potential. The
exchange—correlation functional, Ε [ρ, m], is for the total ground state density:
ρ(r) = n(r, j) + n(r, if ), and the spin polarization m(r) = n(r, r) — n(r, t), where
n(r, σ) = nc (r, σ) + nν (r, σ).

In our calculations of the spontaneous magnetization, we take into consider-
ation the Dirac density matrix of the valence electrons (one-electron propagator).
The density matrix is calculated iteratively. In the first step of the calculations, the
density matrix is approximated by a uniform spin-polarized gas. In the next step,
we apply the Lindhard approximation. In this approximation, the pseudopotential
is determined for the spin densities of the previous calculations. The calculated
spin moments (time-averages) per atom in this work for the uniform spin densi-
ties and in the Lindhard approximation are compared with experimental data in
Table I. The magnetization is represented by a non-zero moment of the core ion
due to the stability of the closed shells and the spin polarization of the valence
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(chemically active) electrons. The magnetization of Fe or Co is determined by the
moment of the 3d5 closed shell and the spin polarization of the valence electrons.
For nickel, we take two valence electrons. A cubic field splits the atomic levels of
the 3d shell into Ε, and T29 subshells. In the nickel core, we take the 3d5 spin
up shell as well the 3d3, T29 spin down subshell. The ground-state properties of
the 3d transition metals have been studied by accurate density functional calcu-
lations in Ref. [7]; in particular, the magnetization values obtained there are in
better agreement with experiment than the present ones (given in Table I). Our
approach to the uniform electron gas is equivalent to the structureless

pseudopotential approximation applied by Perdew et al. [5] to calculate the cohesive and
surface properties of metals.

2. The Bloch wall parameter in a molecular field approximation
The conventional calculations of the magnon stiffness constant are related

to the transverse dynamical spin susceptibility. Our calculations of the Bloch wall
parameter, A, or the magnon stiffness constant, D, are based on a study of fer-
romagnetic and paramagnetic phases. In the statistical theory of order-disorder
transitions, the Bragg-Williams approximation converts the energy functional of
spin polarization into a simple sum of one-atom contributions

The Bragg-Williams relation(3) is set up in Ref. [8], where J is studied. In the
ferromagnetic and paramagnetic phases, Ε [ρF, mF] and Ε [ρP, 0] are the energy
functionals per atom, respectively, pF(r,T) and pp(r,T) — the electronic densities,
mF (r, T) and mP (r, T) — the spin polarizations. Τ denotes the temperature. The
parameter J describes a spin-dependent, non-local interaction and in the case of
the Heisenberg model it represents the exchange interaction between nearest-neigh-
bour spin pairs. In our paper, the parameter J is determined by Eq. (3) and repre-
sents the interaction between spin moments of the nearest-neighbour Wigner–Seitz
cells. The number of the nearest-neighbour Wigner–Seitz cells is denoted by z. The
ferromagnetic order parameter, S = S(T), is the time-average of the spin moment
per Wigner-Seitz cell along the axis of quantization. In the Heisenberg model, the
parameter J is an important physical quantity for ferromagnetic materials and
affects the dispersion relation of magnons, the Bloch wall, the temperature prop-
erties (spontaneous magnetization vs. T, specific heat, Curie transition temper-
ature) and the dynamic transverse magnetic susceptibility. The magnon stiffness
constant, or the Bloch wall parameter is proportional to J, see [9]. The calculated
values for A and D are compared with experimental data [9] in Table II. For Fe, a
contribution of the discrepancy between theory and experiment in the magnitude
of D or A relies upon the nearest-neighbour approximation. Numerical calcula-
tions of the energy of spin polarization are not simple and require sufficiently
accurate computations. Our quite realistic numerical values of such quantities as
the Bloch wall parameter, or the magnon stiffness constant are based on literature
values of the energy of spin polarization [7]. Let us mention that better agreement
between theory and experiment than that achieved here was obtained for Ni by
Wang and Callaway [10]; however, they dealt with neither Co nor Fe. DFT theories
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of D are presented in Refs. [10, 11]. The Hubbard model [12] value of D is tested
in Ref. [13], where calculated and experimental values of D are compared for Co.
Our calculations, which are based on the Bragg-Williains approximation and DFT
method, take into account an effect of a magnetic disorder on the Wigner-Seitz
cell. This contribution is absent in the conventional calculations of the magnon
stiffness constant.

Acknowledgments

I would like to acknowledge some discussion with J. Morkowski and
A.R. Ferchmin. This work was supported by the Committee for Scientific Research
grant No. 2P302 005 07.

References

[1] Density Functional Theory, Eds. R.M. Dreizler, E.K.U. Gross, NATO ASI Se-
ries B, Vol. 337, Plenum, New York 1995.

[2] A. Nagy, Phys. Rep. 298, 1 (1998).

[3] N.D. Lang, W. Kohn, Phys. Rev. B 1, 4555 (1970); ibid. 3, 1215 (1971).
[4] J.H. Rose, J.F. Dobson, Solid State Commun. 37, 91 (1981).
[5] J.P. Perdew, H.Q. Tran, E.D. Smith, Phys. Rev. B 42, 11627 (1990).
[6] C. Almbladh, U. von Barth, Phys. Rev. B 31, 3231 (1985).
[7] V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated Electronic Properties of

Metals, Pergamon, New York 1978.
[8] W. Schmidt, submitted to J. Phys.' Condens. Matter.

[9] F. Kefler, Spin Waves, in: Encyclopedia of Physics, Ed. S. Flugge, Vol. XVI-ΙΙ/2,
Springer-Verlag, Berlin 1966.

[10] C.S. Wang, J. Callaway, Sold State Commun. 20, 255 (1976).
[11] K.L. Liu, S.Η. Vosko, J. Phys. F' Metal Phys. 8, 1539 (1978).
[12] D.M. Edwards, R.B. Muniz, J. Phys. F 15, 2339 (1985).
[13] X. Liu, Μ.Μ. Steiner, R. Sooryakumar, G.A. Prinz, R.F.C. Farrow, G. Harp, Phys.

Rev. B 53, 12166 (1996).


