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While the diagonalization of a quadratic bosonic form can always be
done using a Bogolyubov transformation, the practical implementation for
systems with a large number of different bosons is a tedious analytical task.
Here we use the coupled cluster method to exactly diagonalise such com-
plicated quadratic forms. This yields to a straightforward algorithm which
can easily be implemented using computer algebra even for a large num-
ber of different bosons. We apply this method on a Heisenberg system with
two interpenetrating square lattice antiferromagnets, which is a model for
the quasi-2D antiferromagnet Ba 2 Cu3 O 4 Cl2 . Using a four-magnon spin wave
approximation we get a complicated Hamiltonian with four different bosons,
which is treated with coupled cluster method. Results are presented for mag-
netic ground state correlations.

PACS numbers: 75.50.Ee, 75.30.Ds, 31.15.Dv, 42.50.Lc

1. Introduction — the model
It is always possible to diagonalize quadratic bosonic forms (which appear

frequently in physics) using a Bogolyubov transformation [1], but it is a tedious
analytical task to find one for a complicated form with many different magnons.
Therefore we want to show here how the coupled cluster method (CCM), one of
the most powerful and universal techniques in quantum many-body theory (see [2]
and references therein), can be used in a straightforward scheme to find the exact
ground state of such a form.

To be concrete we consider the 2D spin-1/2 Heisenberg model

which is related to the situation in Ba2Cu3O4Cl2 [3, 4], a layered quantum antifer-
romagnet showing significant differences to its parent cuprates like La 2 CuO 4 (see
e.g. [5] for recent experiments). In contrast to La2CuO4 we have two different types
of Cu-sites in the Cu—O planes, namely there are additional Cu(Β) atoms located
in the centre of every second Cu(Α)-O2 square. Within the Cu(Α) sub8ystem we
have a strong 180° Cu—O—Cu superexchange yielding to strong antíferromagnetic
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couplings (JAA) between Cu(Α) atoms, whereas the couplings within the Cu(Β)
subsystem (JBB) and between the subsystems (JAB) are weaker. A recent calcula-
tion of JAA, JBB [6], finding JAA 10JBB (both antiferromagnetic) agrees with
the experimental values [5]. There are also some arguments [6] for a ferromagnetic

JAB' JBB.
In the classical ground state (1) shows for |JAB| < 2 '/JΑΑJΒΒ a Néel-like

order for the two subsystems Α and B, where the energy is degenerated with
respect to the angle φ between the spins of these two subsystems.

2. The method
In this paper we study the ground state properties of (1), using a four-

-magnon linear spin wave approximation [7] around the classical ground state,
i.e. for each of the four sublattices A1, Α2 , B1 , B2 of the two coupled bipartite
antiferromagnetic square lattices we introduce different bosonic operators. Thus
we get for (1)

using the lattice structure factors ΥkΑΑ = cos(k/2) cos(ky /2), γkΒΒ = (cos kx +
cos ky )/2 and ΥkΑ2B = cos(kx (y )/2).

As stated, we use the coupled cluster method (CCM) to find the exact ground
state of (2). To do this we notice the following property of H:

Hence it is possible to treat each H'k separately within the CCM, since they all
commute with each other. Therefore we have to deal with a bosonic system with
eight different bosonic operators αl±k, α2±k, b1±k, b2±k denoted with αι, ... , α8.

The ket and bra ground state of such a system (i.e a many-mode bosonic
field theory with bosonic operators αi, α+i in the Hamiltonian) in CCM-SUB/
(SUB/ means products of 1 or fewer bosonic creation operators) approximation is
given by [2, 8]
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where |0) is the bosonic vacuum state (i.e. i 0) = 0), and Α 1... and λ 1 ... are the
CCM correlation coefIicients. These coefficients are calculated by two systems of
equations (one of them is a system of nonlinear equations)

using the expectation value (R) of the Hamiltonian, i.e. the ground state energy.
Note that the CCM-SUΒ2 approximation (i.e. having only quadratic terms

of bosonic operators in S and S (5)) gives the exαct ground state of a quαdratic
bosonic Hamiltonian, since the ground state wave function of such a Hamiltonian
has the form ) = exp (Σ 2 fij α+i ή) |0), which can easily be shown using a Bo-
golyubov transformation (see Appendix). Therefore the CCM correlation operator
S (and S respectively) (5) consists of products of two bosonic creation operators
only, all other coeffIcients Ai ... i are zero; so we just have to use SUΒ2.

To calculate the CCM equations (6) easily using computer algebra, we make
use of the Bargmann representation [9, 8]

which maps the original many-mode bosonic field theory into the corresponding
(classical) field theory of complex functions in a particular normed space. Therefore
instead of bosonic operators we just have to handle with (complex) numbers and
differential operators, which is much easier. Once the (partial nonlinear) equations
are obtained they can be solved numerically.

3. Results and conclusions
We apply the CCM-scheme described above to calculate the exact ground

state of (3) and by doing this we get a spin wave approximate ground state of
the model (1). We discuss the energy as a function of the angle between spins
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of the two subsystems A and B and the correlation between spins of different
subsystems as a function of JAB (Fig. 1). We find as a typical order from disorder
effect that the degeneracy of the ground state with respect to the angle 4 is lifted
by quantum fluctuations and a collinear ordering (φ = 0, π) is stabilized. This
can clearly be seen by the energy vs. φ picture in Fig. 1 and by the correlation
(SiSj)A,B vs. JAB, which is zero in the classical case, independent of the value of
JAB (for JAB | < 2 '✓JAAJBB)• In the quantum case however that correlation does
depend on JAB, showing again an order effect induced by quantum fluctuations.

In addition we find a lowering of the magnetic order within the subsystems
A and particular B by frustrating JAB in the quantum case.
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Appendix
Proof that CCM-SUB2 gives exact ground state

Using the fact that a Bogolyubov transformation βv = Σ (u* αn - ν* α+)
exactly diagonalizes a quadratic bosonic Hamiltonian with the bosonic operators
αi, αt, one can easily show that its ground state must have the form |Ψ)
exp (Σij fij α 4) |0), by showing that βv ^Ψ) = 0 Vv. We use the Bargmann
representation (7) and get

and this last matrix equation is always fulfilled for some  fi μ .
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