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Recently, on the basis of the Tsallis distribution of states the general-
ized Monte Carlo acceptance probabilities have been proposed and applied
to various optimization problems. In the paper we used the generalized simu-
lated annealing algorithms for the ±J spin glass model. Efficiency of the new
annealing procedures was compared with that of the conventional methods.
This was done with respect to the number of annealing steps and to the low-
est energy found. The algorithms were applied to a system of 70 x 70 spins
on a square lattice with periodical boundary conditions whose ground state
configurations are known exactly. This enables us to evaluate the efficiency
in a quantitative way.
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Simulated annealing (SA) is a computational tool to deal with hard opti-
mization problems [1]. The method proceeds in such a way that at each annealing
step n the temperature T(n) is given and the system is allowed to walk on its phase
space long enough so that it will thermalize at T(n). Then the temperature is de-
creased according to a given annealing schedule and the process is repeated till the
final temperature is sufficiently low. Some of the recent applications of SA [2, 3]
have been based on the Tsallis statistics which unlike the usual Boltzmann–Gibbs
theory can be used for nonextensive systems [4, 5].

The paper is organized as follows. We first recall the generalized simulated
annealings (SAs) based on the Tsallis formalism. Next, we describe the system
considered and the simulations. The exact knowledge of the system ground-state
energy enables us not only to examine the time and energy characteristics of the
generalized SAs but also to check their efficiency quantitatively.

The Tsallis generalized acceptance probability (AP) is defined as

where ΔΕ = Enew — Eold (Enew and EOId are energies after and before a random
reconfiguration) and q is any real number [5]. For q —> 1 the AP of canonical SA
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p = min[1, exp(—βΔΕ)] is recovered. Since Eq. (1) does not obey detailed balance,
Andricioaei and Straub have recently replaced it by another AP [3]

In Eq. (1) q is kept constant during a run while in (2) it is a monotonically
decreasing function of temperature Τ. Starting with the initial value of q = qi at
the initial temperature Ti, q must tend to one with Τ going to the final value Tf.

We have tested the above SAs for the 2D Edward-Anderson spin glass 8ys-
tem of 70 x 70 spins whose ground state energy is known exactly [6]. Ising spins
are located at each site of a square lattice with periodical boundary conditions.
The ferromagnetic and antiferromagnetic bonds Jij = ±1 between the nearest
neighbouring sites are distributed randomly and uniformly so that the fraction of
each of them is c = 0.5. The system energy is

where Si , Sj = ±1 are Ising spins, Ν is their total number, and the sum on the
right hand side runs over the nearest neighbouring sites. The last term in (3)
is a shift in the energy scale so that it becomes non-negative [7]. The SAs are
tested by applying Monte Carlo (MC) algorithms within single-spin dynamics [8].
Τ (and q) are kept constant for 100N trial reconfigurations or for 10N successful
rearrangements, whichever comes first [2]. For the cooling schedules 21 is lowered
according to Τ = Τi (T f/Τi)n'Na , where n = 0, 1, 2, ... , Na , and Na is the number
of annealing steps. In Eq. (2) q is also decreased exponentially to one, starting
from values higher than one [3]. The AP (1) is set to zero whenever the argument
of the power law acceptance function is negative.

We have performed 20 independent runs of Na = 1000 steps for each of the
APs with different values of the other parameters. In terms of the temperature
(Fig. 1) low energies are approached faster with (1) for q < 1. It is particularly the
case for q < 0. However, the di8advantage is that the minimiZing stops at higher
temperatures and the system is trapped in a set of isoenergetic states. For q slightly
smaller than one there is no major difference from the regular SA, and for q > 1 no
energy decrease can be found at all. The SA (2) behaves entirely different. Only for
qi extremely close to one the annealing looks similar to the traditional one though
it is a bit slower. In most of the SA steps for all other cases, the energy fluctuates
around a constant value and drops rapidly at the end. No special advantage over
the traditional SA can be observed in this approach. Similar results are obtained
with respect to the number of MC steps per spin (Fig. 2) (one MC step per spin is
defined as a sweep over the whole lattice). Equation (1) leads to low-energy states
extremely fast especially for q < 0. However, an immediate trapping of the system
in its local energy minima is present. The algorithm (2) needs much more time 8o
that the system can find the low-energy states and for qi nearly one can only be
as fast as the regular SA.

Apart from the temperature and time characteristics of the SAs we are in-
terested in their efIiciency, i.e. the energies found at the end of each run (Table).
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Using (1) we can see from Table (part (a)) that the closer to one q is, the lower
are both the lowest final energy Εl and its average (Ει). However, the results
are not qualitatively better than those obtained using the standard scheme (b).
For q = -2 the algorithm is indeed very fast but simultaneously the system is
trapped in a subspace of states with relatively high energies. When applying (2),
for qi slightly larger than one we have arrived at relatively low final energies (c).
Although some of the Ει values are even a little lower than those in (b) we do
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not think that the difference is sufficient to treat this AP as more efIicient. The
tendency is such that for larger qi both Ει and (Ει) are higher as well. None of
the algorithms has found the true ground state whose energy was 2976.

Summarizing, none of the generalized SAs has proven qualitatively more ef-
ficient in the above optimization problem. Using them we have arrived at states
whose energies compare with those found with the standard MC method. How-
ever, in term8 of very quick but imperfect minimization the AP (1) seems the
most useful. Our results together with others confirm the general opinion that the
methods are strongly model dependent.
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