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The magnetic contribution to the specific heat of the Blume-Emery—
Griffiths model with spin-one is studied by the cluster variational method in
pair approximation. The nearest neighbour correlation functions are taken
into account. The temperature dependencies of the specific heat are calcu-
lated and discussed in the context of the phase diagrams obtained recently
for the thin film with bilayer geometry.

PACS numbers: 75.10.-b, 75.70.-i

1. Introduction

The Blume-Emery-Griffiths (BEG) model for spin S = 1 has been exten-
sively studied on account of very rich phase diagrams it exhibits [1-4]. Besides ordi-
nary exchange interactions the model takes into account the single-ion anisotropy
and biquadratic terms. These interactions allow us to discuss many interesting
properties, for instance the existence of multicritical points, continuous and dis-
continuous phase transitions, staggered quadrupolar and ferrimagnetic phases, as
well as the re-entrant phenomenon.

Cluster variational method in pair approximation (CVMPA) is one of the
most accurate and convenient method for studies of the BEG model [2, 4, 5]. As
far as the bilayer system is concerned, CVMPA has not been applied yet for the
calculations of the magnetic specific heat, although it has been used for studies of
the phase diagrams [4] and magnetic susceptibility [5].

For the above reasons, the aim of the present paper is investigation of the
specific heat within CVMPA for the bilayer system with z = 5. Starting from the
Gibbs energy, the theoretical formula for the specific heat has been derived. On
this basis, we have performed the numerical calculations of the specific heat curves
vs. temperature, for various kinds of the phase diagrams. The numerical results,
selected for some characteristic cases, are illustrated in figures and discussed.
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2. Theory
The BEG Hamiltonian is of the form

=-JY SiS—AY S}SF-D> S}-h)_ S, O]
{i4) () i i

where S; = 0,%1; J and A denote the bilinear and biquadratic exchange constant,

whereas D is the single-ion anisotropy constant and A stands for an external field.

We will consider the nearest neighbour (nn) interactions only and a system con-

sisting of two interpenetrating sublattices a and b [3-5].

For the identification of various magnetic phases, we must find the sublattice
magnetisations, mq = (S; o), and the quadrupolar moments, g4 = (S7,), Where
a = a,b. In particular, for J > 0 and h = 0, the following four phases are possible:

ferromagnetic phase (F): my = mp #0, ¢ = gs;

paramagnetic phase (P): mqy = mp = 0, ¢, = @;

staggered quadrupolar phase (SQ): ma = mp =0, ¢a # @;

ferrimagnetic phase (I): 0 # mq # mp # 0, ¢a # ¢-

The occurrence of these phases depends on the values of A and D parameters, as
well as the temperature, hence various phase diagrams can be obtained.

As far as CVMPA is concerned, we will refer to the paper [4] where the details
of the method have been given, and the full expression for the Gibbs energy has
been presented. Having Gibbs energy, G, the magnetic contribution to the specific
heat, Cj, can be obtained from the general formulae

oi=-o(58) ~r(%) - ().

where S is the entropy of the system, and H denotes the enthalpy. The latter is
defined as the mean value of the Hamiltonian (1), i.e., H = (H).

The final formula for the specific heat, however, is too long to be pre-
sented in this paper and will be published elsewhere. It is a complicated func-
tion of me and ¢, as well as the nearest neighbour pair correlation functions
(SiSs), (S7S;), (SiS?), and (S?S?). All these functions can be found when corre-
sponding variational parameters are known, which, in turn, have to be determined
from the cluster variational equations [4]. In this paper we will present only some
of numerical results, i.e., the specific heat curves vs. temperature, which are char-
acteristic of the various magnetic phases F, P, SQ, and 1.

3. The numerical results and discussion

The numerical calculations were performed for the bilayer system with z = 5
and for A = 0. The specific heat has been studied for various kinds of the phase
diagrams obtained in [4].

‘ For instance, in Fig. la the phase diagram kpT/J vs. D/J for A/J = ~0.5
is presented [4]. The continuous and discontinuous phase transitions, represented
by solid and dashed line, respectively, meet at the tricritical point (the bold dot).
The regions of ferromagnetic and paramagnetic phases are indicated.

In relation to Fig. la, in Fig. 1b the specific heat was calculated for 4/J =
—0.5 and D/J = —1.24. In this case three phase transitions occur, i.e. F/P (dis-
continuous, at kpT/J = 0.342), P/F (continuous, re-entrant, at kg7'/J = 0.634)
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Fig. 1. (a) The phase diagram for A/J = —0.5 (see Ref. [4]). (b) The magnetic specific
heat per one lattice site for A/J = —0.5 and D/J = —1.24.
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Fig. 2. (a) The phase diagram for A/J = —5 (see Ref. [4]). (b) The magnetic specific
heat per one lattice site for A/J = —5 and D/J = 20.4.

and F/P (ordinary, continuous, at kgT/J = 1.051). The temperatures of these
phase transitions are marked by the dots on the horizontal axis. We can see the
rapid changes of the specific heat at the phase transition temperatures, especially
the high peak at the re-entrant temperature, kg7'/J = 0.634, is remarkable.

In Fig. 2a we present the phase diagram kg7"/J vs. D/J for A/J = —5 [4]. In
this case four phases (P, F, SQ, and I) are seen. All these phases meet at the point
of their coexistence (i.e. tetracritical point), at which the four continuous phase
transition lines meet at different angles. The discontinuous (dashed line) phase
transitions between F and I phase meet the continuous ones at the tricritical point
(the bold dot). :

In relation to Fig. 2a, to perform the specific heat calculations we chose
the value D/J = 20.4 (Fig. 2b). The phase transition temperatures: F/I (discon-
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tinuous, at kgT/J = 1.478), I/SQ (continuous, at kgT/J = 1.965) and SQ/P
(continuous, at kgT/J = 2.890) are marked by the dots on the horizontal axis
(Fig. 2b). The jumps of the specific heat at the phase transition temperatures
are seen. The small maximum appearing in the low temperature region is not at-
tributed to the phase transition. Its existence can be explained by analysis of the
magnetisation curve in ferromagnetic phase.

All the results presented here are the stable solutions corresponding to the
minimum of the Gibbs energy. Let us note that for low temperatures the specific
heat always tends to zero, which is in agreement with the third principle of ther-
modynamics. Thus, CVMPA proved to be a good technique for studies of not only
the phase diagrams [4], or the magnetic susceptibility [5], but of the specific heat
as well.

Although CVMPA is known to be a much better technique than the molec-
ular field approximation (for instance, for the Bethe lattices it gives the exact
results [4]), as far as the regular lattices are concerned, some verification of the re-
sults by other, more accurate methods, would be desirable. For instance, it would
be of a great value to perform the Monte Carlo simulations for the bilayer system
in the frame of the same model.
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