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A semiphenomenological model of sound propagation in a critical mag-
netic system is proposed, which takes into account a relaxation of energy
between the system of localised spins and the conduction electron spins as
well as the coupling of the longitudinal phonon to bilinear combination of
spin fluctuations and to the energy densities. A general expression for the
acoustic self-energy is obtained within the one-loop approximation. The ef-
fect of "bottlenecking" and its influence on the critical singularities in the
sound characteristics is discussed.
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There are many different regimes in the critical sound attenuation in mag-
nets, depending on sound frequency, reduced temperature and some relevant re-
laxation frequencies [1, 2]. In this paper we study an Ising-like, local spin system
coupled to the longitudinal sound mode and three kinds of energy densities. In anal-
ysis of metal systems, we should take into consideration the relaxation between
the three components of the system — the localised spins, conduction electrons,
and the lattice. As we shall see, in some circumstances a ratio of the relaxation
rates may be such as to modify the phonon self-energy and a kind of bottleneck
effect can appear.

We consider a one-component spin (order parameter) S(x) coupled to the
local strain e αβ(x) and three energy densities: the spin energy eS(x), lattice energy
eL(x) and the spin energy of the conduction electrons ec(x). The interactions are
described by the functional

where the first three terms in this Hamiltonian compose the Ginzburg—Landau
functional for the order parameter. The energy field eL(x) is related to all vibra-
tions of lattice atoms excluding sound. Elastic degrees of freedom are already ac-
counted (fourth and fifth term of (1)) and for isotropic media C44 =

2 (C11 - C12), where Cαβ are the bare elastic constants. The next three terms
form the lowest-order expansion of the functional with respect to energy fields
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with CL, CS, and Ce as the corresponding bare specific heats. The other terms de-
scribe interactions. We postulate that besides the magnetostrictive coupling (with
the coupling constant g) there are also strain-energy density interactions with the
coupling constants w, α 1 w, and a2w. The sound mode appears in our theory after
normal mode expansion of the strain tensor.

The dynamics of the model is described by the nonlinear Langevin equations

where the Fourier representation has been used, Qk is the longitudinal phonon
coordinate and damping coefficients Γ, 8k 2 , (γ + β + λsk 2 ), (γ + δ + λLk 2 ), and
(β + δ + λLk 2 ) are related to the variances of the noises k , nk, φΡk, Ψk and Xk
through the Einstein relations. The last three equations describe the energy flows
between the localised spins, lattice and conduction electron subsystems which
tend to equalize the local temperatures in the three subsystems. In metals usually
γ ι β, δ and direct relaxation from the local spins to the lattice can be neglected.

It is convenient to represent the equations of motion in the functional rep-
resentation [3] with the Lagrangian given by
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where ,4, B, ... are frequency dependent coefficients, the lattice energy field
can be decoupled from the other energies. The free spin-energy and conduction
electron-energy response function get renormalised to the form

where DS 0 (k,ω) = (—iω/ΓS + C_ 1 S)1, Dc0(k, ω) = (—iω/Γc d- C^ 1)-1 and
c L = ω/ωL is the frequency reduced with respect to the bare lattice-energy re-
laxation rate ωL = ΓL/CL. Assuming the adiabatic approximation for the lattice,
ώώL» 1, which is justified for CL CS, C we obtain DS0 DS 0 and Dc0 Du0 .

Next, using similar Gaussian transformations we decouple the sound mode
from the spin and energy fields getting a general expression for the acoustic
self-energy [2]

where Ψ = (ΓS2 -k - u'S2kω ) LΑ , g(k,ω) = g-wfCSP(k, ω) is an effective frequency-
-dependent coupling constant with P(k, ω) = Μ—iω(1-a2ß/Γs) ω = ωCS/ΓS(k),
and ώ = ωCc/Γc (k). The four-spin response function Ψ is calculated with the
effective, phonon and energy free Lagrangian of the model A in the classification
of Hohenberg and Halperin 4 • b ω =   is a coefficient containing details
of dynamics. The parameter Μ = 1 — Γ s k Γc k δΡ+ρΡ takes a value close to
unity in the normal (unbottlenecked) case when δ » ß , i.e. when the conduction
electrons transfer their energy much faster to the lattice than to the local-spin
system. When δ « β i.e. the conduction electron-lattice relaxation rate is slow
and energy is "piling up" in the conduction electrons spin system, one can study,
by analogy to the electron spin resonance phenomena in metals [5], a bottleneck
effect in the sound propagation. In that case Μ δ/p « 1 and for low frequencies
we get

which is analogous to the expression for the normal system, where instead of ώ/Μ
only ώ appears. As Μ K 1 for the bottlenecked systems, the role of the denomina-
tor in Eq. (11) is much more important than for normal systems. As a consequence,



912 	 A. Pawlak

the sound attenuation coefficient, which is determined by the imaginary part of
Σ, is given by

where the scaling relation Ψ = t-α'Φ(y) has been used with Φ( y) as a scal-
ing function, y = ωt-Ζv/Γ as the reduced frequency and t = (Τ - TC)/TC as
the reduced temperature. In Eq. (12) strong singularity (the first term), called
also the Murata—Iro-Schwabl singularity, competes with the weak singularity (the
Kawasaki term), where the singularity exponent p = 2α is very small, like in mag-
netic insulators [6]. What is important, the relative weight of both terms W 2 /W1
is increased in the bottlenecked system by the factor of Μ-1 β/δ » 1in com-
parison with that in the normal system. In principle, changing the amount of
magnetic impurities or adding some other impurities, we are able to change the
conduction electron—lattice relaxation rate. By lowering δ, a crossover to the weak
singularity (insulator-like behaviour) should be observed which is consequence of
the bottlenecking of the system.

For high frequencies the acoustic self-energy takes the form

The only difference between normal and bottlenecked system is that the high-
-frequencies for the former means ώ<1 » 1 and for the latter ώ » M,so the
high-frequency regime begins, for the bottlenecked system, from much lower fre-
quencies than for the normal system. The sound attenuation coefficient is domi-
nated here by the singularity of different type

where Cc « CS was assumed. The high-frequency behaviour of α(ω, t), can be also
called "fully adiabatic" behaviour [2] as the local spin system and the conduction
electron spin system no longer can be treated as at equilibrium with sound wave
or with each other. Thus, changing δ we are able also, at least in principle, to shift
the adiabatic region towards lower frequencies making it possible to be observed
also in the ultrasonic frequency range.
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