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THE NUMERICALLY GENERATED SERIES
EXPANSIONS FOR SPIN-LATTICE SYSTEMS
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Umultowska 85, 61-614 Poznan, Poland

The numerically generated series expansions complementary to widely
used computer simulations of the Monte Carlo type, are presented. The effec-
tive algorithm for generation of graphs, which constitute the basis of series
expansions for spin-lattice systems, is introduced. The use of the numerically
generated series expansions to calculate the free energy for the eight-vertex
model is explained and discussed in detail.

PACS numbers: 02.60.—x, 75.10.Hk, 75.40.Cx

1. Introduction

Series expansions (SE) are widely used in physics and astronomy. Descrip-
tion of physical phenomena in which interactions between degrees of freedom of
the system completely change the character of the solution, requires derivation
of a large number of terms in such expansions. Classification of the contributions
of higher order terms leads naturally to a description in terms of linear graphs'
(for the review see [1]), in which bonds correspond to interactions. SE have at-
tracted particular attention in statistical mechanics, and especially the low- and
high-temperature expansions have led to important progress in the theory of phase
transitions and critical behaviour of spin-lattice systems. Investigation of complex
models of these systems is usually carried out by computer simulation methods
of the Monte Carlo type, whose results should be confirmed with the aid of other
complementary methods.which are SE, provided that they contain a sufficient
amount of terms.

Our aim is to prepare a numerical procedure of effective generation of arbi-
trary long SE to analyse a wide class of spin-lattice systems. We will present this
procedure calculating the free energy for the eight-vertex model, as it represents
a wide class of such systems.

*e-mail: gmusial@zawrat.amu.edu.pl
t A linear graph is a collection of k points (called vertices) with ¢ bonds between certain pairs
of vertices and one pair of vertices connected by one bond.
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2. Calculation of the free energy

The numerically generated SE will be discussed on the example of the eight-
-vertex model on a simple cubic lattice, for which the zero-field effective Hamilto-
nian is of the form

-BH = K, ZO’;’O’j +.K2§:TiTj +-K4Z(7i7'io'j7'j, (1)

(¢.4) {6.4) (i.5) :

where the angle brackets denote summation over nearest neighbors, 8 = 1/kgT,
kg is the Boltzmann constant, T' — the temperature, o;, 7; = 41 are the spin vari-
ables residing at the same site of the lattice, K3 and K3 are couplings between two
neighboring o spins and 7 spins, respectively, whereas K4 is the coupling between
all four spins residing at two neighboring sites of the lattice. This Hamiltonian has
a general form and allows concluding about a wide class of classical models; e.g.,
for K5 = K this model reduces to the Ashkin-Teller (AT) model.

As an illustration of calculations of thermodynamic functions we explain how
to calculate the reduced free energy of the model

F 1
f= Nl - N InZ, (2)
using the SE numerical technique. Here F' is the free energy and N is the number
of sites in the lattice. The most important quantity which allows us to calcu-
late the free energy (and the other thermodynamic functions) is the. partition
function Z= Tr e P#. For further calculations we perform the transformation
eKr0ios+Kamiti+Ka0imi0i7i = g 4 bo;0; + e77; + do;T;057; and we use the fact that
oi, 7 = +1, which allows us to write down all nonequivalent equations (there are
4 such equations) and to obtain the expressions for the constants a, b, ¢, d in terms
of the couplings Ky, Ko, K4, e.g. a= chKichKachK4+shKshKeshKy. Thus, we
have

Z=Tr aN*/? H(l—i—vlow]— + vaTiTy + V4037057 ), (3)

{5.5)
where v; = b/a, v2 = ¢/a, v4 = d/a.

After multiplication of all terms in the product in Eq. (3) we obtain a sum
of other terms that contain some powers of spins, v;, vs and vg. The trace can
be calculated separately for every term and then only these terms in which spins
appear in even powers give non-zero contribution to the sum. This means that
spins contribute a factor 1 in every non-vanishing term. We can order terms with
increasing s (s is the sum of powers at vy, vs, and vy4) and truncate the sum
rejecting terms with s > Smax, Which should be chosen big enough to obtain the
desired precision of computation.

Such an ordering of terms leads naturally to a description in terms of linear
graphs in which bonds correspond to these interactions between spins which are
specified in the Hamiltonian. The fact that spins appear only with even powers
means that only closed graphs give non-zero contribution to the free energy.

Using graph representation we can write the partition function in the form

Z = aN#/292N |1 4 ZNi(g)I(g)v{(g)v;(g)vT(g) ’ (4)
g
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where summation runs over all non-isomorphic graphs g in increasing ordert,
t,J,n, m are integer numbers and [ is the lattice constant of a graph?. As discussed
above after Eq. (3), we sum over all graphs with orders lower or equal to spax. In
Sec. 3 we propose the effective algorithm of generation of graphs and we explain
how to obtain the values of the integers I, j, n, m.

Following Egs. (2) and (4) and expanding In we get the final expression for
computation of the reduced partition function:

f=2In2+ %lna + Z I(g)vi (@R ()ym() (5)
g

3. The algorithm of calculations

We propose here the algorithm which generates all closed connected linear
graphs of the i-th order, with 7 < smax. We generate graphs starting from polygons
which are the simplest graphs and simultaneously they are the starting point for
further calculations. Next graphs are obtained by choosing in the starting graph
of all possible pairs of not directly connected vertices and next by consequent
projections of the vertex¥ of a higher number (which disappears) onto the other
one in the chosen pairs. At the same time the chosen pairs of vertices are connected
by additional bonds forming other new graphs.

An important matter is the way of labelling of graphs. We assign the label
to each graph using canonical labelling [1] and in such a way we generate only
topologically different graphs. Two graphs which can be put into 1 to 1 correspon-
dence, so whose vertices and bonds correspond, are isomorphic and should get the
same label.

The label of every graph obtained as a result of projection of vertices onto
themselves is added at the end of the set of generated graphs, provided it has not
been generated earlier. The algorithm ends the calculations when all graphs from
the set have undergone the projection procedure and from the last one no new
graph arose. The resulting set of graphs is arranged according to increasing orders
of the graphs. It is worth noting that up to this point, the procedure proposed
here is independent of the choice of the model and the lattice geometry.

In the next step graphs are coloured, i.e. a specific spin—spin interaction
together with a coupling constant is assigned to every bond in the graph, which is
connected with the choice of a specific model. This assignment has to be done in
every possible way to simulate every possible configuration of the system in SE.
As far as the eight-vertex model is considered, a graph contains j bonds of v; type,
n bonds of vz type and m bonds of v4 type. Here also graphs with odd number of
bonds joined to a vertex are possible to get coloured here, which means that we
have many more graphs when compared to those used for the Ising model.

{The order s of the graph is the number of bonds that it contains. One interaction introduces
one bond in the graphs, here s = j + n 4+ m because i-th interaction introduces also v; to the
term that is represented by the graph.

§The lattice constant of a graph is a number of nonequivalent puttings around 1 site of the
lattice divided by a symmetry factor of the graph.

fProjection of one vertex onto another physically means that they overlap.
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After this stage of calculations, certain connected graphs are rejected, par-
ticularly in more complicated models. Therefore, only after the graphs have been
coloured, all non-connected graphs should be constructed as combinations of con-
nected graphs of lower orders whose sum is the order of the complex graph.

After all graphs are completed and coloured, the lattice constants are cal-
culated for them as defined above (for details see e.g. [1]) which is related to the
choice of a specific geometry of the lattice.

4. Conclusions

The basic elements for numerically generated SE are the algorithms for
graphs generation and colouring. The proposed algorithms work effectively but
the user has to have at his disposal enough space of operational memory in a com-
puter with 64-bit processor (more than 2 GB to obtain the complete set of about
105 graphs up to 15-th order when the maximum number of bonds at a graph
vertex is limited to 6). Another way of comparing of the new generated graphs
with graphs which have been obtained before and which are stored on hard disk is
too time consuming to generate the complete set of graphs of order greater than 11
in the realistic time.

As an example of a thermodynamic function the free energy in the series
expansion has been considered. Analogously, starting from the partition function,
other thermodynamic functions can be calculated.

Long SE are necessary to analyze the 3D version of many spin-lattice systems
with sufficient accuracy. Using our experience in studying the 2D AT model [2]
and the numerical procedure presented here we plan to consider the 3D AT model,
whose phase diagram is still not fully resolved and rises many interesting points
like e.g. the character of transition from para- to antiferromagnetic phase [3].

The outlined subroutines enabled us to construct and colour graphs up to
15 order (higher orders are also possible) which ensures sufficient precision of the
SE results e.g. for the 3D AT model.
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