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Monte Carlo simulations are used to analyse the behaviour of the ex-
teuded Ashkin—Teller model in two (2D) and three (3D) dimensions from
the ratio of the square of the second moment of the order parameter to its
fourth moment. The critical surface in three dimensional parameter space is
calculated in regions where the Ising transitions are expected both for the
ferro-and antiferromagnetic regions.

PACS numbers: 75.10.Hk, 75.40.Mg, 64.70.-p

1. Introduction
The Ashkin-Teller (A-T) model is a simple extension of the Ising model

but its critical properties reveal new interesting features [1]. It can be viewed
as a combination of two Ising models with some four-order interaction. If the
third-order terms are included [2, 3], the extended A-T model is described by the
Hamiltonian analysis

where β = (kΒΤ) -1 , the summation is taken over nearest neighbour sites of a
square or cubic lattice and spins s, σ = ±1 are the Ising variables. The tempera-
ture is included in the interaction parameters of the model, so that the two-spin
interaction parameter Κ2 , the four-spin interaction parameter K4, and the odd
interaction parameter K are dimensionless. The standard Α-Τ model corresponds
to K = 0.

The properties of the extended Α-Τ model were investigated within the
molecular-field approximation (MFA) [2] as well as the molecular field renormal-
ization group (MFRG) method [3]. The standard  Α-Τ model in 2 and 3 dimensions
was examined [4, 5] within the Monte Carlo methods and the series analysis, yield-
ing the approximate phase diagrams.

Here, we verify the Ising-like transitions in the extended model (1) in 2D,
using the Monte Carlo simulations. We also address the problem of Ising transitions
for the standard model in 3D. The latter seems to exhibit the tricritical point in
the antiferromagnetic region [4] but both the simulations and the series analysis
supporting this picture, are too short to give a definite answer.
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2. Description of the method

In our investigation of the model (1) we generated (by computer) the equilib-
rium configurations of the finite size samples of spins for fixed values of the model
parameters. Periodic boundary conditions were imposed and thermalization of the
initial configurations was applied.

Gibbs distribution was sampled using the Metropolis algorithm [6]. We started
with some initial configuration α of spins and a new configuration α' of the sys-
tem was generated from α by the repetive application of the important sampling
procedure when flipping successive spins on the lattice.

The spins may be selected at random, or each of the spins in the sample
may be reversed in turn (which is the case here). We reverse the spin or do not
do it according to some initially chosen transition probability and when each spin
of the sample has been visited once (on the average or consecutively) we carried
out one Monte Carlo step (MCS) per spin. Either of these procedures ensures
that the accessibility criterion, which states that it must be possible to evolve the
system from a given starting point to any of its other configurations by applying
the evolution rule a sufficiently large number of times, is satisfied.

In order to decide whether to accept a single  spin-flip or not, we compared the
energies of the new and old configurations. If the energy change Εα ' - Eα was neg-
ative, then the new configuration was automatically accepted; if, however, it was
positive, the new configuration was accepted with a probability exp[-β(Εα -Εα )].
Physically, it means that both configurations are in equilibrium and none of them
arises at the expense of the other. Using this method, we generated configurations
which allowed us to calculate physical quantities in a direct way.

The transition point was determined [7, 8] from the analysis of the fourth
order cumulant

where (Μn ) denotes the n-th power of an order parameter averaged over the as-
sembly of independent samples of the size L x L or L x L x L in 2D and 3D,
respectively. For Τ > Τ  and L , where ξ denotes the correlation length, QL
tends towards 1/3 which corresponds to a Gaussian distribution. For Τ < T, and
L » , QL tends to 1. For L , QL varies only weakly with temperature
and linear dimension, and stays very close to the value of 0.856 [8] in two di-
mensions and 0.628 [9] in three dimensions — the values achieved at the critical
point. This number is characteristic of the corresponding Ising universality class.
This behaviour of the cumulant is useful for determination of  Τ. One may plot
QL versus Τ for various L and estimate Τ  from the intersection point of these
curves [7].

3. Results

We performed our simulations on the two-dimensional square lattice and for
the regions of the parameter space (Κ 2 , Κ4 , K), where the phase transitions are
expected to be of the Ising type. It is known [1] that the line going from the Potts
point (K2 = K4 = 0.275) to the Ising point (1(2 = 0, K4 = 0.441) is of the Ising
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type. We expected that its continuation towards nonzero K values would exhibit
the same behaviour. Also a line which begins at the point (K2 = 0, K4 = -0.441)
has the Ising-like critical exponents and therefore, we performed calculations of
the surface which is a continuation of this line for nonzero K.

We used (sσ) as an order parameter M because s is never critical for K Ο 0
and (σ) takes small values even in temperatures far from the critical one. Figure 1
shows a three-dimensional phase diagram in the (K2 , K4 , K) space of parameters
for the model (1) on the square lattice.

In three dimensions and for K = 0, we investigated the ferromagnetic and
antiferromagnetic regions of the parameters (K2 , K4) with Ising-type phase tran-
sitions, using systems with linear size L < 25. The corresponding estimates of the
critical couplings K? as a function of K4 are presented in Table. Our results for

Kc2,denoted as Kf2,K2af (for the ferro- and antiferromagnetic region, respectively),
are given in the second and the fifth column whereas previous estimates K2DB are
displayed in the third and the sixth column.

In the Ising limit K2 = 0 we estimated the critical coupling at K4 = 0.2215(4)
which agrees within the error bars with that found by Talapov et al. [9], using the
cluster processor and a newly built special-purpose computer.

4. Discussion
Our main result reported here is the three-dimensional phase diagram in 2D

shown in Fig. 1 and the Monte Carlo data for the critical couplings in 3D given in
Table.
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In 2D no evidence for the first order phase transition was found (see Ref. [6]
for more details) although some MFA or MFRG results [2, 3] suggested that it
may occur. In 3D our results are more accurate than those of Ditzian et al. [4] and
suggest that the region of the Ising line transitions is other in the antiferromagnetic
part of the K2 - K4 phase diagram, which may be extended with respect to that
found previously [1]. As to the tricritical point in 3D, its existence still needs more
considerations. The simulations in the vicinity of non-Ising universality class have
to be performed extremely carefully. The estimates given in Table are calculated
from the corresponding 6 partial averages, each consisting of several millions of
MCS per spin.
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