Proceedings of the European Conference "Physics of Magnetism '99", Poznań 1999

RELAXATION OF 53 Cr SPIN ECHO SIGNALS IN Cd_{0.985}Ag_{0.015}Cr₂Se₄

G.N. Abelyashev^a*, V.N. Berzhansky^a, S.N. Polulyakh^a and N.A. Sergeev^b

^aDepartment of Physics, Simferopol University Yaltinskaja 4, 333007 Simferopol, Ukraine ^bInstitute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland

The frequency dependences of the relaxation times of NMR spin echo signals of quadrupole nuclei ⁵³Cr at $t_e = \tau$ and $t_e = 3\tau$ in ferromagnetic semiconductor Cd_{0.985} Ag_{0.015} Cr₂Se₄ were investigated at temperature 4.2 K. It was shown that there are two kinds of the quadrupole nuclei ⁵³Cr, which have quite different relaxation times. The existence of two kinds of the nuclei ⁵³Cr was connected with doping of the cadmium selenochromite with Ag⁺ ions.

PACS numbers: 76.20.+q, 76.60.-k, 76.60.Lz

1. Introduction

The pulse-NMR method is one of the powerful techniques for the study of the spin dynamics in magnetically ordered materials. In the case of the quadrupole nuclei with spin I = 3/2 (for example ⁵³Cr nuclei), when the quadrupole interactions of the nuclei do not equal zero, the two echo signals may be observed at $t_e = \tau$ and $t_e = 3\tau$ [1-3]. The first echo signal V_{τ} is the usual Hahn echo and the NMR spectrum $V_{\tau}(\nu)$ recorded with the aid of this echo reflects all NMR spectral lines of the quadrupole nuclei. However, the spectrum NMR $V_{3\tau}(\nu)$ recorded with the aid of the echo at $t_e = 3\tau$ consists of the NMR resonance frequencies, whose values are determined by the hyperfine magnetic interaction only [1-3]. The aim of this paper is to analyze the relaxation of the $V_{\tau}(\nu)$ and $V_{3\tau}(\nu)$ echo signals of the quadrupole nuclei ⁵³Cr in ferromagnetic semiconductors Cd_{0.985}Ag_{0.015}Cr₂Se₄.

^{*}e-mail: roton@ccssu.crimea.ua

2. Experimental results and discussion

The NMR measurements were made on the polycrystalline multidomain sample Cd_{0.985}Ag_{0.015}Cr₂Se₄ at T = 4.2 K in zero static external magnetic field. The experimental results are shown in Fig. 1 and Fig. 2. The analysis of the obtained experimental results were provided assuming that the time fluctuations in the electron magnetization M_e due to the fluctuations in the hyperfine magnetic and quadrupole interactions lead to the relaxation of the spin echo signals. Assuming the frequency τ_{ce}^{-1} of the time fluctuations of M_e is smaller than NMR resonance frequencies ν_i and so remaining in the fluctuating hyperfine magnetic and electric quadrupole Hamiltonians the secular terms only we obtained the following expression for the relaxation rate of the echo signal $V_{\tau}(\nu)$:

$$T_2^{-1}(\tau,\nu_i) = A + B_i \sin^2(2\theta_0), \tag{1}$$

where $i = 1, 2, 3; \nu_1$ is the resonance frequency of the NMR transition $\pm 1/2 \leftrightarrow \pm 1/2; \nu_{2,3}$ are the resonance frequencies of the NMR transitions $\pm 3/2 \leftrightarrow \pm 1/2$. In Eq. (1) the angle θ_0 is the angle between the local trigonal axis and a direction of the electron magnetization vector M_e . The NMR resonance frequencies ν_i are uniquely determined by the angle θ_0 . The solid lines shown in Fig. 1 represent the theoretical frequency dependences obtained from the best fit of Eq. (1) to the observed values of $T_2(\tau, \nu)$. As is seen, the theoretical curves agree well with the experimental results. In the secular approximation we obtained the following expression for the relaxation of the multiquantum echo signal $V_{3\tau}(\nu_1)$:

$$T_2^{-1}(3\tau,\nu_1) = 3T_2^{-1}(\tau,\nu_1).$$
⁽²⁾

Fig. 1. Frequency dependence of the relaxation time $T_2(\tau,\nu)$ of the ⁵³Cr nuclei in Cd_{0.985} Ag_{0.015} Cr₂Se₄ at T = 4.2 K. The solid lines are the theoretical curves obtained from the best fit of Eq. (1) to the measured values of $T_2(\tau,\nu)$. Curve 1 is the dependence $T_2(\tau,\nu_1)$; curves 2 and 3 are the dependences $T_2(\tau,\nu_2)$ and $T_2(\tau,\nu_3)$. Broken line 4 is the theoretical curve $T_2(\tau,\nu_1)$ obtained in the nonsecular approximation.

Fig. 2. Frequency dependence of the relaxation time $T_2(3\tau,\nu)$ of the ⁵³Cr nuclei in $Cd_{0.985}Ag_{0.015}Cr_2Se_4$ at T = 4.2 K. The solid lines are the theoretical curves obtained from the best fit of Eq. (3) to the measured values of $T_2(3\tau,\nu)$ (black circles). The broken line is the theoretical curve $\frac{1}{3}T_2(\tau,\nu_1)$ obtained with the parameters defined from curve 1 in Fig. 1.

As is seen from Fig. 2 only two experimental points (the open circles) coincide with frequency dependence (2). In order to understand the source of this discrepancy we considered the relaxation of the echo signal at $t_e = 3\tau$ assuming that the time fluctuations of M_e are not small ($\tau_{ce}^{-1} \gg \nu_i$) and retaining in the fluctuating Hamiltonians the nonsecular terms too. The obtained expression for the relaxation rate of spin echo $V_{3\tau}(\nu_1)$ has the form

$$T_2^{-1}(3\tau,\nu_1) = C + D\cos^2(2\theta_0).$$
(3)

As is seen from Fig. 2 the dependence (3) well describes the observed dependence of $T_2(3\tau, \nu_1)$.

The obtained results suggest that in Cd_{0.985}Ag_{0.015}Cr₂Se₄ there are two kinds of the ⁵³Cr nuclei which have quite different relaxation channels ("secular" and "nonsecular"). The nuclei of the first kind ${}^{53}Cr(I)$ give the main contribution to the echo signal $V_{\tau}(\nu)$. In the echo signal $V_{3\tau}(\nu)$ these nuclei are observed only at $\nu > 44.5$ MHz (the open circles in Fig. 2). The nuclei of the second kind ${}^{53}Cr(II)$ have very short relaxation time $T_2(\tau,\nu)$ and so they do not give the contribution to the observed echo signal $V_{\nu}(\tau)$. We may observe these nuclei only with help of the echo $V_{3\tau}(\nu)$ (the black circles in Fig. 2). In order to understand why the nuclei ⁵³Cr(II) do not give the contribution to the echo signal at $t_e = \tau$ we considered the nonsecular relaxation of the echo signal $V_{\tau}(\nu_1)$. The broken line in Fig. 1 represents the obtained theoretical curve. As is seen the relaxation of the echo signal $V_{\tau}(\nu)$ from the nuclei ${}^{53}Cr(II)$ is indeed smaller one for the nuclei ${}^{53}Cr(I)$. It is reasonable to assume that the existence of two kinds of the nuclei ⁵³Cr in Cd_{0.985}Ag_{0.015}Cr₂Se₄ is connected with the doping of $CdCr_2Se_4$ with Ag⁺ ions. The doping of the cadmium selenochromite with silver ions produces, as a result of electric charge compensation, the Cr⁴⁺ impurities. The different relaxation channels for the nuclei ⁵³Cr(I) and ⁵³Cr(II) are probably connected with the dynamical nature of the Cr⁴⁺ defects. We assume that electron exchange between the Cr⁴⁺ and Cr³⁺ ions sited inside of the defect region leads to the rapid fluctuations in the local electron magnetization $(\tau_{ce}^{-1} \gg \nu_i)$ so the nuclei ⁵³Cr(II) located in these defect regions "feel" due to the hyperfine and quadrupole interactions the rapidly fluctuating electron magnetization. The rate of local fluctuations of M_e for the nuclei ⁵³Cr(I) which are sited far from defects is small, then ν_i and the relaxation of the echo signals from these nuclei is "secular".

References

- G.N. Abelyashev, V.N. Berzhansky, N.A. Sergeev, Yu.V. Fedotov, Sov. Phys.-JETP 61, 127 (1988).
- [2] G.N. Abelyashev, V.N. Berzhansky, N.A. Sergeev, Yu.V. Fedotov, Phys. Lett. A 133, 263 (1988).
- [3] G.N. Abelyashev, V.N. Berzhansky, S.N. Polulyakh, N.A. Sergeev, Yu.V. Fedotov, Sov. Phys.-JETP 100, 1981 (1991).