RELAXATION OF ^{53}Cr SPIN ECHO SIGNALS IN Cd$_{0.985}$Ag$_{0.015}$Cr$_2$Se$_4$

G.N. ABELYASHEVA*, V.N. BERZHANSKYA, S.N. POLULYAKHA AND N.A. SEREDEV

*Department of Physics, Simferopol University
Yaltinskaja 4, 333007 Simferopol, Ukraine

bInstitute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland

The frequency dependences of the relaxation times of NMR spin echo signals of quadrupole nuclei ^{53}Cr at $t_e = \tau$ and $t_e = 3\tau$ in ferromagnetic semiconductor Cd$_{0.985}$Ag$_{0.015}$Cr$_2$Se$_4$ were investigated at temperature 4.2 K. It was shown that there are two kinds of the quadrupole nuclei ^{53}Cr, which have quite different relaxation times. The existence of two kinds of the nuclei ^{53}Cr was connected with doping of the cadmium selenochromite with Ag$^+$ ions.

PACS numbers: 76.20.+q, 76.60.—k, 76.60.Lz

1. Introduction

The pulse-NMR method is one of the powerful techniques for the study of the spin dynamics in magnetically ordered materials. In the case of the quadrupole nuclei with spin $I = 3/2$ (for example ^{52}Cr nuclei), when the quadrupole interactions of the nuclei do not equal zero, the two echo signals may be observed at $t_e = \tau$ and $t_e = 3\tau$ [1–3]. The first echo signal V_τ is the usual Hahn echo and the NMR spectrum $V_\tau(\nu)$ recorded with the aid of this echo reflects all NMR spectral lines of the quadrupole nuclei. However, the spectrum NMR $V_{3\tau}(\nu)$ recorded with the aid of the echo at $t_e = 3\tau$ consists of the NMR resonance frequencies, whose values are determined by the hyperfine magnetic interaction only [1–3]. The aim of this paper is to analyze the relaxation of the $V_\tau(\nu)$ and $V_{3\tau}(\nu)$ echo signals of the quadrupole nuclei ^{53}Cr in ferromagnetic semiconductors Cd$_{0.985}$Ag$_{0.015}$Cr$_2$Se$_4$.

*e-mail: roton@ccssu.crimea.ua
2. Experimental results and discussion

The NMR measurements were made on the polycrystalline multidomain sample Cd$_{0.985}$Ag$_{0.015}$Cr$_2$Se$_4$ at $T = 4.2$ K in zero static external magnetic field. The experimental results are shown in Fig. 1 and Fig. 2. The analysis of the obtained experimental results were provided assuming that the time fluctuations in the electron magnetization M_e due to the fluctuations in the hyperfine magnetic and quadrupole interactions lead to the relaxation of the spin echo signals. Assuming the frequency τ_{ee}^{-1} of the time fluctuations of M_e is smaller than NMR resonance frequencies ν_i and so remaining in the fluctuating hyperfine magnetic and electric quadrupole Hamiltonians the secular terms only we obtained the following expression for the relaxation rate of the echo signal $V_\tau(\nu)$:

$$T_2^{-1}(\tau, \nu_i) = A + B_i \sin^2(2\theta_0),$$

(1)

where $i = 1, 2, 3$; ν_1 is the resonance frequency of the NMR transition $\pm 1/2 \leftrightarrow \mp 1/2$; $\nu_{2,3}$ are the resonance frequencies of the NMR transitions $\pm 3/2 \leftrightarrow \pm 1/2$. In Eq. (1) the angle θ_0 is the angle between the local trigonal axis and a direction of the electron magnetization vector M_e. The NMR resonance frequencies ν_i are uniquely determined by the angle θ_0. The solid lines shown in Fig. 1 represent the theoretical frequency dependences obtained from the best fit of Eq. (1) to the observed values of $T_2(\tau, \nu)$. As is seen, the theoretical curves agree well with the experimental results. In the secular approximation we obtained the following expression for the relaxation of the multiquantum echo signal $V_3(\nu_1)$:

$$T_2^{-1}(3\tau, \nu_1) = 3T_2^{-1}(\tau, \nu_1).$$

(2)

Fig. 1. Frequency dependence of the relaxation time $T_2(\tau, \nu)$ of the 53Cr nuclei in Cd$_{0.985}$Ag$_{0.015}$Cr$_2$Se$_4$ at $T = 4.2$ K. The solid lines are the theoretical curves obtained from the best fit of Eq. (1) to the measured values of $T_2(\tau, \nu)$. Curve 1 is the dependence $T_2(\tau, \nu_1)$; curves 2 and 3 are the dependences $T_2(\tau, \nu_2)$ and $T_2(\tau, \nu_3)$. Broken line 4 is the theoretical curve $T_2(\tau, \nu_1)$ obtained in the nonsecular approximation.
As is seen from Fig. 2 only two experimental points (the open circles) coincide with frequency dependence (2). In order to understand the source of this discrepancy we considered the relaxation of the echo signal at $t_e = 3\tau$ assuming that the time fluctuations of M_e are not small ($\tau_{ce}^{-1} \gg \nu_1$) and retaining in the fluctuating Hamiltonians the nonsecular terms too. The obtained expression for the relaxation rate of spin echo $V_3\tau(\nu_1)$ has the form

$$T_2^{-1}(3\tau, \nu_1) = C + D \cos^2(2\theta_0).$$ (3)

As is seen from Fig. 2 the dependence (3) well describes the observed dependence of $T_2(3\tau, \nu_1)$.

The obtained results suggest that in Cd$_{0.985}$Ag$_{0.015}$Cr$_2$Se$_4$ there are two kinds of the 53Cr nuclei which have quite different relaxation channels ("secular" and "nonsecular"). The nuclei of the first kind 53Cr(I) give the main contribution to the echo signal $V_\tau(\nu)$. In the echo signal $V_3\tau(\nu)$ these nuclei are observed only at $\nu > 44.5$ MHz (the open circles in Fig. 2). The nuclei of the second kind 53Cr(II) have very short relaxation time $T_2(\tau, \nu)$ and so they do not give the contribution to the observed echo signal $V_\nu(\tau)$. We may observe these nuclei only with help of the echo $V_{3\tau}(\nu)$ (the black circles in Fig. 2). In order to understand why the nuclei 53Cr(II) do not give the contribution to the echo signal at $t_e = \tau$ we considered the nonsecular relaxation of the echo signal $V_\tau(\nu)$. The broken line in Fig. 1 represents the obtained theoretical curve. As is seen the relaxation of the echo signal $V_\tau(\nu)$ from the nuclei 53Cr(II) is indeed smaller one for the nuclei 53Cr(I). It is reasonable to assume that the existence of two kinds of the nuclei 53Cr in Cd$_{0.985}$Ag$_{0.015}$Cr$_2$Se$_4$ is connected with the doping of CdCr$_2$Se$_4$ with Ag$^{+}$ ions. The doping of the cadmium selenochromite with silver ions produces, as a result of electric charge compensation, the Cr$^{4+}$ impurities. The different relaxation channels for the nuclei...
$^{53}\text{Cr}(\text{I})$ and $^{53}\text{Cr}(\text{II})$ are probably connected with the dynamical nature of the Cr$^{4+}$ defects. We assume that electron exchange between the Cr$^{4+}$ and Cr$^{3+}$ ions sited inside of the defect region leads to the rapid fluctuations in the local electron magnetization $(\tau_{ce}^{-1} \gg \nu_i)$ so the nuclei $^{53}\text{Cr}(\text{II})$ located in these defect regions "feel" due to the hyperfine and quadrupole interactions the rapidly fluctuating electron magnetization. The rate of local fluctuations of M_e for the nuclei $^{53}\text{Cr}(\text{I})$ which are sited far from defects is small, then ν_i and the relaxation of the echo signals from these nuclei is "secular".

References