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Α Green function method is developed for estimation of lattice
parameter r(χ) of an AX—BX solid solution over entire composition range
(χ = 0 to 1). The r(χ) obtained in the present method is different from
the value rv (χ) suggested by Vegard's law. We estimated the deviation from
Vegard's law, r(x)—rv(x), over entire composition range for isovalent substi-
tutional defect in alkali halide crystals. When compared to X-ray diffraction
measurements, we find that the deviation is in correct direction, variation of
r(χ) with χ is consistent with experiment and the overall agreement is fairly
good considering the accuracy of the experiment.

PACS numbers: 61.72.Βb, 61 .82.Βg

1. Introduction

From early works on equilibrium diagram it is clear that the first addition
of one binary compound to another binary compound does not produce a new
phase, but leads to a homogeneous alloy which is regarded as a solid solution of
one binary compound in the other. X-ray diffraction photographs show that the
general pattern of the lines or spots remain the same both for the solid solvent and
for the solid solutions but the exact position of the lines or spots differ slightly for
the two cases. These investigations indicate that the solid solution has the same
structure as the parent crystal and formation of substitutional solid solution is
accompanied with a uniform lattice relaxation, either contraction or expansion.

L. Vegard [1] was first to propose a law to fit the observed lattice parame-
ter change. He originally deduced it for solid solution in ionic crystals and later
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extended that for metallic solid solutions also. If the lattice parameter for the ob-
served AX-BX solid solution is denoted by α(χ) and that of the constituents by
αΑx and αBx, then Vegard's law states that

where χ is the molar fraction of BX in the AX-BX solid solution.
Extended X-ray absorption fine structure (EXAFS) measurements [2], on the

other hand, indicate a different picture. These measurements provide a wide range
of information regarding nearest neighbour (nn) distances in binary solid solutions
over entire composition range. They observed for an AX-BX solid solution, at any
defect concentration χ, that the first neighbour separations between the ion pairs
Α ↔ Χ and Β +-4 Χ differ substantially from each other and also from the value
suggested by Vegard's law. Thus a striking difference is apparent between the
experimental evidences available from the two types of experiments for relaxation.

Early theoretical estimates of the relaxation are mostly on dilute concentra-
tion of defects (i.e. χ → Ο or χ → 1) and thus the concerned authors could not
trace the above problem in their investigations for obvious reason.

For high concentration of defects, different approaches, like Durham et al. [3]
from atomistic calculation, Hardy et al. [4] from lattice static calculation, Fukai [5]
from both semidiscrete and superlattice method, Fancher and Barsch [6] from
semidiscrete method and present authors [7] from a self-consistent semidiscrete
method, obtained a single value of relaxation for both types of nearest neighbour
pairs indicating existence of a virtual crystal having lattice parameter r(χ), fairly
close to the values suggested by Vegard's law.

In recent past we have developed a Green function technique [8] to evaluate
the nearest neighbour separation of ion pairs Α↔Χ and Β ->Χ for an AX-BX solid
solution over entire composition range. Values obtained from this model, in case
of alkali halide solid solutions, are found to have remarkably good agreement with
EXAFS measurements [2] .

In the present work, we have extended this Green function technique to find
the virtual crystal nearest neighbour separation r(χ) in terms of the nn ion pair
separation rA ^x and rΒ↔x , corresponding to some defect concentration χ. It is
interesting to note that Vegard's law suggests a linear dependence of χ for vir-
tual crystal lattice parameter r(χ), whereas the present model finds a quadratic
dependence of r(χ) on χ along with a linear dependence, which seems to be quite
significant from the non-linear nature of the experimental curves, for all avail-
able alkali halide solid solutions. We have plotted deviation from the Vegard law,
r(χ) — rv, from the present model and compared with experimental values for four
types of alkali halide solid solutions. For each case the deviation is in the right
direction and the agreement is also fairly encouraging considering the simplicity of
the model. Easy handling opportunity makes the model suitable for solid solutions
having complicated structures.

The model is already tested for dilute metallic solid solutions [9] for which
we have got good agreement with the experimental results.
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2. Theory

In a solid solution AX—BX, at any stage of composition A1- X Β Χ, if any
experiment (e.g. X-ray diffraction experiments) fails to measure the individual
relaxations at different sites but yields a relaxation picture on the average, then
for this average lattice or virtual lattice, we propose a lattice parameter r(χ)
(nn separation) given by

where rΒχ(χ) and rΑχ(1 — χ) are the nearest neighbour separations between
the ion pairs Β++X and Α<X, respectively, measured (EXAFS measurements) at
the same composition stage.

For a finite concentration χ, we consider the concentration to be achieved by
successive addition of a single defect. As a result rΑ,_,χ and rB↔χ will be changing
continually, gradually reaching rA ,χ(1—χ) and rB↔χ(χ), respectively. If in an AX
host crystal a guest ion Β replaces an isovalent ion A, then due this replacement
the Χ ion, which is nearest neighbour to the defect ion B, relaxes by υ1 (say).
Following Huang's [10] idea of uniform dilation, we apply dilute concentration
relaxation 11 1 to find rΒ,_,X(χ), and obtain

where r 1 , ν1 are the nn separation and atomic volume, respectively, of the perfect
AX crystal, χ — the mole fraction of defect ion Β and Κ1 — the defect strength
constant. Similarly, starting from a perfect BX crystal and replacing χ' [= (1 — χ)]
mole fraction of B-ion by isovalent defect ion A, we obtain

where u2 is the dilute concentration relaxation of Χ ion which is nearest neighbour
to defect ion A, r2 and ν2 are the nn separation and atomic volume, respectively,
of the perfect BX crystal and Κ2 is the defect strength constant.

For estimation of defect strength constant we refer to our work [8], where a
smooth merging of the microscopic relaxation, experienced by the near neighbour-
hood of the defect iOn, to the macroscopic strain developed in the further region
of the crystal, yields

where k 1 and k2 are constants to be determined from the boundary conditions.
From Eqs. (5), (6) and (3), (4), we get
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For NaCI-type structure, we get from (5) and (6)

For a A1-XΒ Χ solid solution χ ' = 1 — χ and the boundary conditions are
(I) at χ = 1, rΒ,_,.x(χ) = r2 and we get

Substituting (11) and (12) in (9) and (10), respectively, we get

where ru, the nn separation according to the Vegard law, is given by

Substituting (13) and (14) in Eq. (2) we obtain the present expression for r(χ) as

We have estimated u l and u 2 from a static Green function model [8] and obtained
individual relaxations at different lattice sites over entire composition range from
Eqs. (9) and (10) (EXAFS observations) while Eq. (16) gives us the virtual lattice
parameter as expected in the X-ray diffraction measurements. The physical content
of Eq. (16) may be expressed in the following way: the χ(1— x) dependence enters
by the present construction' while the factor u1 -F u2 introduces the relaxation
phenomenon into the description.

2.1. Estimation of relaxation u by a static Green function technique

In Ref. [8] we developed a static Green function technique to estimate the

lattice relaxation. If u Ck I be the relaxation of the lk-th ion due to substitution

of a defect ion Β in place of an isovalent A ion in the AX crystal, and f C j be
the additional force experienced by the lk-th ion due to this replacement, then the
new equilibrium demands
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where 
Φ k k' are the force constants of the perfect AΧ crystal. For a diatomic

crystal with Ν cells, Eq. (17) may be written as

where mk and mk are the masses of the ions of type k and k', respectively, and
the static Green function Η -1 is given by

Y ,J

In the present paper, we have replaced ω 2 (q, j) by an average Einstein frequency
defined by

For the NaCl structure, using a two-body central potential with repulsive interac-
tion ψ up to the nearest neighbour only, we can write the relation between (ω 2 )
and G, the bulk modulus of the host crystal as

where ϕ'(t) = dϕ/dt, etc. and r is the nn separation of the host crystal. Finally,
applying orthogonality condition for eigenvectors and using Eq. (21) we get the
relaxation of the X-ion at the nn site (100) of the substituted B iοn at (000)

where k = 100 designates the particular nn iοn under consideration and mk1, mkt
are the masses of the two ions of the host crystal and r and G are, respectively,
the nn separation and bulk modulus of the host crystal.

3. Results and discussions

In the previous section we have developed a model which offers a simulta-
neous explanation to both EXAFS measurements and X-ray diffraction intensity
measurements. In Ref. [8] we have found that this model is very successful in ex-
plaining EXAFS measurements [2] of nn separations rΑ,_,X and rΒ,i χ over entire
composition range, both for positive ion and negative ion substitutions in case of
alkali halide solid solutions.
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Fig. 1. Comparison of Δr = r(χ) — rv, the deviation of the theoretically calculated
values of nn separation r(χ), from the value suggested by Vegard's law, over the entire
composition range to the experimentally observed values for NaCl1--XBrx alloy. Contin-
uous curves are due to the present calculation. Experimental values, shown by squares,
are due to Ahtee [12].

Fig. 2. Comparison of Δr = r(χ) — rv, the deviation of the theoretically calculated
values of nn separation r(χ), from the value suggested by Vegard's law, over the entire
composition range to the experimentally observed values for RbBr1-x Ι alloy. Contin-
uous curves are due to the present calculation. Experimental values, shown by squares,
are due to Ahtee [12].

In the present work, we have calculated r(χ), the virtual crystal nn sep-
aration from Eq. (16) utilising rΑ Χ and rB^ χ values obtained from Eqs. (13)
and (14), respectively. We have presented plots of r(χ)—rν, the deviation from the
Vegard law, over entire composition range for four alkali halide solid solution sys-
tems, e.g., ΝaCl1- x Βrx , RbBr1-xΙx, Κ1- x RbCl and Κ1- x RbBr shown in Figs. 1
to 4 and compared with experimental values obtained from X-ray diffraction mea-
surements. Considering the uncertainties in measurements and also in input data,
the agreement seems to be quite satisfactory. It is significant to note that all avail-
able measurements on alkali halide solid solutions show that the dependence of
r(χ) on χ is not linear in nature as suggested by Vegard's law. The present model
correctly obtains the variation of r(χ) with χ to be of quadratic nature. This model
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Fig. 3. Comparison of Δr = r(χ) — rv, the deviation of the theoretically calculated
values of nn separation r(χ), from the value suggested by Vegard's law, over the entire
composition range to the experimentally observed values for Κl- x Rbx Cl alloy. Contin-
uons curves are due to the present calculation. Experimental values, shown by squares,
are due to Ahtee [12].

Fig. 4. Comparison of Δr = r(χ) — rv, the deviation of the theoretically calcnlated
values of nn separation r(χ), from the value snggested by Vegard's law, over the entire
composition range to the experimentally observed values for Κ 1 - x Rb x Br alloy. Contin-
uons curves are due to the present calculation. Experimental values are not available.

also predicts the sign of the deviation r(χ) — rV correctly. In case of alkali halides,
all available measurements show r(χ) —rV to be positive as obtained in the present
derivation. But this test is very crucial for metallic solid solutions where in some
cases (e.g. Au—Ag solid solution [11]) this is found to be negative experimentally.
It is significant that our present model also predicts that the sign of r(χ) — rV is
negative for this case.

As can be seen from Eq. (16), the model is very sensitive to the dilute
relaxation parameters u 1 and u 2, obtained for a Β ion substitution in AX host
crystal and an A ion substitution in BX host crystal, respectively. The static Green
function technique developed is found to be a quite dependable one for alkali halide
solid solutions [8] and metallic solid solutions [9]. We present a list of u l and u2,
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for the four cases studied, in Table. We do not, however, present rΑχ(χ) and
rBχ(χ) since this has already been presented in [8]. Of the two possible values
of rB↔χ, one with rA χ as host crystal and the other with rB^ χ as the host
crystal in an A1- X Β Χ solid solution, we preferred taking the first choice, i.e.
rΒ,_,X from ΑΧ host crystal and rA ^x from BX host crystal, respectively. The
values from the alternative choices are very close, but for r(χ) — rV sensitivity
requirement being very stringent, we choose the first alternative. This is to avoid
any arbitrariness involved in introducing Huang's idea of uniform elastic dilation at
high concentration of defect. An appropriate choice of defect strength constant K,
present in the Huang expression can only remove this arbitrariness. We refer to
our detailed discussion [7] on the defect strength constant K and write

where k is determined from the smooth merging of the microscopic relaxation
(u) experienced by the nearest neighbour to the defect, to the macroscopic strain
developed in the rest of the crystal. For an ΑΧ host crystal, we have determined
k 1 from the condition of smooth merging of rB ↔χ to rBX at χ = 1 (see Eq. (11)).
Similarly, for BX host crystal smooth merging of rA ^χ to rAx at X' = 1 (i.e. at
χ = 0).

We had to choose solid solutions depending on the availability of X-ray
diffraction measurement. Isovalent positive ion substitution is examined in case
of KCl—RbCl and KRr—RbBr solid solutions and isovalent negative ion substitu-
tion is examined of NaCl—NaBr and RbBr—Rbl solid solutions. Of these EXAFS
measurements are available only for two cases, KBr—RbBr and RbΒr—RbI.
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It is interesting to note that in obtaining r(X), rA↔χ , rB ,X over the entire
composition range no particular behaviour of the solid solution is used as input.

The model is quite simple but seems to be fairly useful, particularly, its
possible utility in case of two-phase solid solution with heterostructure solutes,
approximated as isotropic solid, keeps it worth pursuing.
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