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Computation of reliable effective interionic pair interaction for simple
metals has been discussed on the basis of localised ab initio pseudopotential
within linear screening approximation. The influence of different commonly
used screening functions on the shape of pair potential is examined and
the temperature dependence of the interaction is also investigated. Various
features of the potential are studied and compared with empirical and avail-
able first principle results. Importance of the present study and some related
problems are also analysed.
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1. Introduction

Since the seminal contribution of March and coworkers [1], considerable
progress has been made in the development of the effective interionic pair potential

approach in condensed matter research. A real space description of bonding

ener-

getics in terms of effective interaction by “integrating out” a number of microscopic
degrees of freedom is useful in material physics for several reasons. Besides pro-
viding improved interpretability and direct understanding of structural stability
and relaxation phenomena in simpler terms, it offers viable computational schemes
for simulation of complex material science problems. Ever expanding computing

capabilities notwithstanding, the desired computational speed essential for

(651)

com-
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puter simulation requires schemes of comparable simplicity. Useful applications of
interionic potential methods are being made in defect properties, thermodynamic
properties of solids and liquids, structure and dynamics of expanded liquid sys-
tems, surface studies and molecular-dynamics (MD) to name important few. More
sophisticated and ambitious task of including simultaneously the ionic and elec-
tronic degrees of freedom in the ab initio molecular dynamics study [2] requires
enormous computational effort. The size of the system which can be afforded in
this scheme is generally much smaller compared to that in classical simulation.
Although, the introduction of ultrasoft pseudopotentials have somewhat extended
the scope of the scheme [3], the technique is extremely expensive in terms of CPU
time to get wider applications to first-row elements and transition metals. Fur-
thermore, the pair potential based MD calculations also provide useful standard
for comparison with the first principle MD studies and in a recent first principle
approach [4] final result of the former is used as the initial choice of the ionic
configuration.

In the limit of adiabatic approximation, the Born-Oppenheimer (BO) the-
ory predicts that the internal energy of a solid (condensed phase) can be broken
up into a sum of two-body, three-body etc. energies. The successive terms are
expected to be of decreasing importance. The pseudopotential theory of metals,
however, suggests the possibility of a break-up of the total metallic energy into
a pure volume dependent part plus an energy due to density dependent effective
interionic interactions. The volume dependent energy in the pseudopotential the-
ory may be viewed as a smeared out many-body interaction. The total energy
of a metal, according to second-order pseudopotential theory, may be expressed
in terms of a density dependent pairwise interionic interaction in addition to the
volume dependent energy. Higher order energy terms actually contain, in addition
to some residual volume energy and two-body, interactions among three and more
ions.

Pair potentials cannot by themselves describe the broad range of material
properties of transition metals and semiconductors [5]. However, most simple met-
als and simple metal based binary systems appear to be well described at the pair
potential level and these potentials are being used in atomistic simulations. Molec-
ular dynamics result for liquid Ge shows that the structure of this metallic liquid
is well described in terms of volume forces and pair potentials without invoking
explicit many body forces [6]. A large number of atomistic simulations have also
been performed for transition metals using only pair potentials with parameters
fitted to several known properties [5].

Several calculations are made where pure two-body potentials are obtained
from direct inversion of the total cohesive energy by the forcible subsumming of
the many-body effects [7, 8], while some attempts have also been made to include
explicit three- and many-body potentials in the cohesive energy expression [9, 10].
However, these are in conflict with the pseudopotential theory of metals and intro-
duce artificiality in the description. For example, the parametrized fitting scheme
of Kluge et al. [10] gives a counterintuitive result that the three-body energy con-
tribution is larger in the liquid and amorphous phase than that in the crystalline
phase. In order to obtain interionic potentials valid over a wide range of density,
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appropriate density dependence of the cohesive energy should have to be included.
"The pseudopotential approach, apart from being a microscopic theory, includes im-
portant many-body effects even in the second-order approximation through both
purely volume dependent energy term and the parametric volume dependence
of the effective pair interaction. Moreover, optimum transferability among a va-
riety of geometries and chemical environments of the ab initio pseudopotentials
(AP) [11, 12] makes them particularly useful in deriving interionic potentials suit-
able for studies of defect properties. Combined with the present day accuracy of
ab initio pseudopotentials [13], this definitely underscores the importance of the
search of a reliable interionic potential on the basis of them.

Studies with model pseudopotentials predict oscillatory two-body interac-
tion with deep negative (attractive) minimum favouring a hard-sphere description
for most simple metals. Understandably though, there are large variations [14-16]
among various calculations with model pseudopotentials derived from piecemeal
studies of different sets of few lattice mechanical properties. Interionic pair po-
tentials obtained from comprehensive unified study can only claim reliability and
indeed they are found to compare well [14] with the few first-principle calculations
made so far. However, the positions and the values of the potential minima ob-
tained from the model pseudopotential calculations compare rather less favourably
with ab initio calculations [17-19]. Also, in alloys model pseudopotentials usually
fail [6] and one has to use more reliable ab initio psedopotentials. The calculation
of electron—ion correlation function gei(r) (within the linear screening approxima-
tion assumed for the valence electron density around each ion) provides another
test for the pseudopotential itself. The position of the first minimum of gei(r)
is almost the same as that of the first peak of ion—ion pair correlation function
g(r) [4]. Calculation with ab initio pseudopotential [11, 20] for Al shows (Fig. 1)
much better agreement with the empirical data [21] compared even to that with
model (pseudo) potential of earlier unified study [14].

Ab initio approaches provide a physical insight of the problem as well as a
microscopic theoretic understanding of the various approximations made. In the
present work we intend to calculate the effective interionic pair potentials of the
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Fig. 1. The electron—ion pair correlation function gei(r) for Al
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alkali metals and those of polyvalent Mg and Al with the localised ab initio pseu-
dopotential form factors derived in Ref. [20] as the first part of our programme for
the determination of reliable pair interaction for a host of other group of metals.
The dependence on various screening functions and variation with temperature
have also been investigated systematically. Changes in the pair potential on al-
loying occur from the variation of the electron density dependent screening func-
tion and due to variation of pseudopotential with composition. The pair potential
derived from pseudopotential theory is a “constant volume” interionic potential
suitable for homogeneous systems and describes ionic rearrangements at constant
volume. However, Matsuda et al. [22] have studied the dependence of the structure
of expanded liquid alkali metals over a wide range of densities based on the ef-
fective pair potentials derived from electron~ion pseudopotential within the linear
screening approximation and found excellent agreement with experimental results.
Pair potential in strongly inhomogeneous system, may be described in terms of a
local density [23] derived from an average over some finite distance comparable to
the electronic screening length. In the solution of the compressibility problem the
concept of local volume was introduced earlier [24, 25] with a specific form for the
local volume strain, satisfying some general properties demanded by the lattice
mechanical theory. The force constant elements redefined with some additional
terms, ensure the equivalence of the compressibility and other elastic constants in
“homogeneous deformation” and “long wave” methods [24]. Using the concept of
local volume it may be, therefore, possible to describe ionic rearrangements under
varying local volume keeping the average volume constant.

The study of temperature dependence of the dynamical structure of ex-
panded liquid is generally based on the effective pair potential. Different tempera-
ture conditions influence the interaction through the change in the atomic volume.
Empirical studies have shown a “normal ordering” that the first minimum of ¢(r)
becomes deeper with increasing temperature without much affecting the position
of the minimum [26]. A systematic study of variation of the pair potential curve
with temperature is, therefore, very important. Precise form of the screening func-
tion has a drastic influence on the shape of the effective pair potential at low and
moderate distances and is found to affect the “normal temperature ordering”. In a
previous work Sarkar and Sen [27] have briefly reported applications of interionic
pair potential of rubidium using localised ab inétio form factor [20] with reasonable
success. The results show the importance of using first-principle pseudopotential
in determining reliable effective pair potential for metals.

2. Basic theory

Simple metal effective interionic pair potential according to second-order
pseudopotential theory is given by

b= ZL_2 / Fu(g; n)sm(q") 2dg, | (1)

where Z is the valence and Fy is the Harrlson [28] energy-wave number character—
istic function that embodies detailed electronic band-structure effect including the
self-consistent electron screening. Pseudopotentlal form factors involved in Fiy are
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plane wave matrix elements of ion-electron pseudopotential. The nonlocal ab initio
pseudopotential is formally written as

V=Vv()+Y Vi(r)B, (2)
i

where B is the projection operator on angular momentum I. The analytical forms
for V(r) and V; are given in Ref. [11]: The generalized form factor consists of the
Fourier transform of the local part V(r) and the matrix element (between the

initial |k;) and the final [k;) plane-wave states) of the purely nonlocal part VNE,
which is given by

(e [TV ) = Z<21+1)Pz<cos0> [ @alki(kiyan, @)

where j; and P; are spherlcal Bessel functions and Legendre polynomials respec-
tively, with

0= Lk, ks.

The usual local approximation retains only the “on Fermi sphere” (OFS)
backscattering terms in Eq. (3). Total emphasis on backscattering gives form fac-
tors that result in a large value of resistivity (almost double) for simple metals
such as Na, Mg, and Al [20]. A new local approximation (beyond OFS) makes an
angular average of the matrix element of the nonlocal potential (Eq. (3)) consider-
ing scattering in all possible directions (on and off the Fermi sphere). The average
localised form factor v, so obtained is considerably short ranged (more than 25%
reduction of the form factor at the first maximum near 1.9k¢ for Al compared to
the OFS value), smooth and appears to retain some essential nonlocal features [27].
With linear dielectric screening that takes into account the exchange-correlation
(XC) functional G(q) [29], perturbative calculations using these form factors are
found to give an excellent account of wide range of properties of simple metals [20].

The precise form of the XC functional G(¢) in the dielectric screening func-
tion has a pronounced effect on the pair potential curve. Various analytic expres-
sions for G(q)‘have been proposed satisfying a number of self-consistency criteria.
In the present study we have used four different forms to investigate the influ-
ence of screening function on ¢(r). It is generally appreciated that the modified
Ichimaru and Utsumi (IU) [30] form gives a good account of XC functional for de-
generate electron gas at metallic and lower densities. However, certain inadequacies
are subsequently discussed in current literature and in a recent formulation {31]
a simple parametric form, free from various inconsistencies has been proposed. A
very accurate fit of electron correlation energy-data in the entire density range
is used for the calculation of G(q) which produces some interesting results. The
present study also provides us with the opportunity of judging the merit of differ-
ent XC functionals. The variation of ¢(r) with temperature is also studied using
temperature variation of the atomic volume (£2).

In the high temperature limit (7" > Tp,), the ionic pair correlation function
may be approximated [32] as

o(r)= e IAT, | @
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The ancillary hard-sphere description {33] of interionic. pair interaction de-
fines the relevant parameter i.e. the hard-sphere radius (o) as

#(0) = fmin = SHT. (%)

Empirical value of the packing fraction 5 (= mpo3/6) determined from structural
data [21] may be compared with the theoretical value using o determined from
Eq. (5). ‘

The contribution of the third-order perturbation energy term to the pair
interaction is discussed earlier by Hasegawa [34]. The formulation has been com-
pleted with the inclusion of a missing term [35] and will be discussed elsewhere.

3. Results and discussion

The problem of inferring pair interactions to good accuracy starting from
structural data can be regarded as solved in the case of classical liquids [36].
However, the method requires high accuracy of structure factor data over extended
range of g-values. We, therefore, refrain from any thorough comparison of the
present calculation with the “empirical” potential obtained from the structural
data.

The effective pair potentials computed with localised ab initio pseudopo-
tential in second-order theory for simple metals like Li, Na, K, Rb, Mg, and Al
are presented first. Calculations are made with four different screening functions
of Geldart-Vosko (GV) [29], Taylor (T) [37], IU {30] and the recently proposed
one by Sarkar, Sen, Haldar and Roy (SSHR) [31]. The calculated phonon spectra
from the computed pair potentials are found to agree with earlier second-order
pseudopotential calculation [20].

The nature of variations of the pair potentials for six metals with four differ-
ent screening functions are obtained. Very similar values are found with IU and T
screening functions where as SSHR and GV forms produce closer results. The vari-
ations are more pronounced for polyvalent metals as expected (Fig. 2a, b). From
the calculated temperature variations of ¢(r) we note that the screening functions
of T and IU do not produce the “normal” temperature ordering in case of Li, K,
and Rb. The density values at different temperatures are taken from Refs. [21]
and [22]. Temperature variations are comparatively large in cases of Na, Mg, and
Al [38].

For all four alkali metals and Mg, our second-order calculations of ¢(r) ex-
hibit just beyond the core deep attractive minima close to the nearest neighbour
distances and at large distances usual Friedel or Ruderman-Kittel oscillations with
single dominant wavelength A (= m/k¢) characteristic of sharp Fermi-surfaces in
metals. Except for Li, the positions of the first minima of the potentials agree
with the other two first-principle calculations (Ref. [17] and [18]). However, there
are discrepancies regarding the positions of the first zeros and the depth of the
minima of the potentials (Fig. 3a—c). The pair potentials obtained by Rasolt et
al. from their self-consistent nonlinear charge density calculations show that, of
all the alkali metals, Li has the strongest attractive pair potential and lack of any
sort of ordering from Li to Rb. This is somewhat surprising and contrary to what
our results show — a systematic increase in potential depth from Li to Rb.
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Fig. 2. The nature of variations of the pair potentials ¢(r) with four different screening
functions for (a) Na and (b) Al
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Fig. 3. Comparison of the pair potentials with other ab initio calculations. (a) Li,
(b) Na, and (c) Al. Thin solid curves represent present calculation, dotted curves are
due to Dagens et al. [17] and bold solid curves — from Ref. [18].



658 S. Haldar, A. Sarkar, D. Sen

The pair correlation function determined with second-order ¢(r) at high
temperature limit (7" 3> Tr,) for all the metals excepting Al are shown to com-
pare well (Fig. 4) with the existing Monte Carlo calculations [22]. It may be noted
that the static structure factors obtained from the effective pair potential for Rb
near melting temperature by an iterative scheme [27] are in excellent agreement
with the calculated and the experimental results [39]. The theoretical values of
hard-sphere radii are also found to agree well with the empirically determined
values and are shown in Table. Here also we note better agreement obtained with
SSHR and GV screening functions. For Li, hard-sphere radius given by Rasolt
et al. potential appears to be widely different from the empirical value. Much im-
portance should not-be attached to this rather surprisingly good agreement with
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Fig. 4. The ion-ion pair correlation function g(r) at high temperature limit for Na
(2000 K). Solid curves represent present calculation and diamonds are from Ref. [22].

TABLE

Temperature variations of calculated and empirically deter-
mined values of o.

Element | Temp. [K] | o (cal.) [a.u.] | o (empirical) [a.u] -
Li 520 5.1 5.1
1000 5 —
Na 380 6.2 6.3
820 5.9 6
K 340 8 7.6
720 7.5 7.34
Rb 350 8.4 8.1
900 8.2 7.84
Mg 1153 55 5.48
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these second-order calculations. Firstly, the third-order term contributes substan-
tially to the calculation of ¢(r) and worsens the overall agreement to some extent.
Secondly, for the present ab initio pseudopotential, 3-body interaction implied in
the third-order term is also not negligible. However, it is clear that the poten-
tials of Refs. [17] and [18] fail to produce reasonable agreement in the case of pair
correlation function.

It is regarded that some higher order contributions get included [5, 34] in the
pair interaction scheme such as one by Rasolt et al. But then, their result for Al is
very similar to our second-order calculation (Fig. 3c). For Al, there is something of
a ledge structure in the repulsive region around the nearest neighbour distance and
only vestiges of an attractive minimum at the second neighbour distance indicating
deficiency of a hard-sphere description. On the other hand, adopting closely similar
procedure Manninen et al. [19] have obtained ¢(r) for Al (inserted in a jellium
vacancy) which is better described by a hard-sphere model. Very recently Mishin
et al. [40] have developed interatomic potential for Al, using embedded atom
method (EAM) potential functional based on a large set of experimental and
ab initio data, which gives pronounced hard-sphere description. Simple argument
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Fig. 5. Comparison of pair potentials obtained from calculations up to 2nd- and
3rd-order for: (a) Na (2000 K), (b) Mg (1153 K) and (c) Al (1323 K). Thin solid curves

represent 3rd-order calculations and dotted curves-represent 2nd-order calculations.
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Fig. 6. Phonon dispersion curves obtained from pair potentials calculated up to 2nd-
and 3rd-order and from full 3rd-order pseudopotential calculations for Al. Solid curves
represent pseudopotential calculation, small dashed and long dashed curves represent
calculations from 3rd- and 2nd-order pair potentials respectively. Experimental points
are indicated by stars, solid squares and plus symbols for longitudinal and two transverse
branches respectively.

based on the validity of Eq. (4) for the high temperature (7" >> Tr,) pair correlation
function of Al also favours similar description for ¢(r).

Additional pair potential due to third-order perturbation term in electron-ion
interaction is comparatively large and attractive at short distances and shifts the
first zero of the potential to smaller distances by several percent [34, 35].

For alkali metals and Mg, however, no qualitative change occurs in the ef-
fective pair interaction with the inclusion of third-order contribution (Fig. 5a, b).
But for Al, the third-order contribution drastically alters the pair potential and
for T' > T, a hard-sphere description in conformity with the empirical ionic pair
correlation data emerges (Fig. 5¢). Figure 6 depicts the phonon dispersion curves
obtained from the pair potential and compared with the full third-order pseudopo-
tential ab initio) calculation. The comparison provides an estimate of the 3-body
contribution to lattice vibration in simple metals.

Full third-order calculations which include up to explicit 3-body interactions
only show reasonable agreement with the experimental results for Al. Our calcu-
lation up to second order overestimates phonon frequencies in all the symmetry
directions whereas inclusion of the third-order 2-body (small dashed curves in
Fig. 6) lowers the frequencies much below the experimental values. Contributions
of the 3-body interaction turn out to be significant except for [¢00] and lower [gq0]
transverse branches. Near the zone boundary, the 3-body contributions to the [¢00]
longitudinal and the higher [g¢0] transverse branches are as high as 15 to 20%. For
the [¢q0] longitudinal branch the 3-body contribution of about 15% is obtained
near (0.6, 0.6, 0) point.

Acknowledgment

One of the authors (S.H.) acknowledges financial support from the University
Grant Commission, India.



Effective Pair Interaction ... 661

References

(1} M.D. Johnson, N.H. March, Phys. Lett. 3, 313 (1963); M.D. Johnson, P. Hutchi-
son, N.H. March, Proc. R. Soc. 4 282, 283 (1964).

(2] R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

[3] K. Laasonen, A. Pasquarello, R. Car, C. Lee, D. Vanderbilt, Phys. Rev. B 47,
10142 (1993).

[4] F. Shimojo, Y. Zempo, K. Hoshino, M. Watabe, Phys. Rev. B 52, 9320 (1995).

{5] A.E. Carlsson, Solid State Physics, Eds. H. Ehrenreich, D. Turnbull Vol 43,
Academic Press, New York 1990, p. 90.

[6] J. Hafner, S.S. Jaswal, Philos. Mag. A 58, 61 (1988).
[7] A.E. Carlsson, C.D. Gelatt, H. Ehrenreich, Philos. Mag. A 41, 241 (1980).

[8] A. Mookerjee, N.-X. Chen, V. Kumar, Md.A. Sattar, Technical Report
(IC/91/351), ICTP, Trieste 1991.

[9] F.H. Stillinger, T.W. Weber, Phys. Rev. B 31, 5262 (1985).
[10] M.D. Kluge, J.R. Ray, A. Rahman, Phys. Rev. B 36, 4234 (1987).
[11] G.B. Bachlet, D.R. Hamann, M. Schluter, Phys. Rev. B 26, 4199 (1982).
[12] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
{13] R.M. Wentzcovitch, M.L. Cohen, Phys. Rev. B 37, 5571 (1988).

[14] D. Sen, Ph.D. thesis, University of Calcutta, 1982, unpublished; A. Sarkar, D. Sen,
S. Sengupta, Pramana 20, 491 (1983).

[15] D. Sen, A. Sarkar, S. Sengupta, Acta Phys. Pol. A 67, 773 (1985).

[16] B.J.C. Cabral, J.L. Martins, Phys. Rev. B 51, 872 (1995).

[17] M. Rasolt, R. Taylor, Phys. Rev. B 11, 2717 (1975); L. Dagens, M. Rasolt, R. Tay-
lor, ibid., p. 2726.

[18] A.K. McMahan, J.A. Moriarty, Phys. Rev. B 27, 3235 (1983); J.A. Moriarty,
M. Widom, Phys. Rev. B 56, 7905 (1997).

[19] M. Manninen, P. Jena, R.M. Nieminen, J.K. Lee, Phys. Rev. B 24, 7057 (1981).

[20] D. Sen, Phys. Rev. B 42, 1217 (1990); D. Sen, in: Proc. Nucl. Solid State Phys.
Symp., Bhopal 1988, Vol. 31C, DAE, Bhopal 1988, p. 115.

[21] Y. Waseda, The structure of Non-crystalline Materials, McGraw-Hill, New York
1980.

[22] N. Matsuda, H. Mori, K. Hosino, M. Watabe, J. Phys., Condens. Matter 3, 827
(1991).

[23] R.J. Harrison, Surf. Sci. 144, 215 (1984).

[24] D. Sen, S.K. Sarkar, D. Roy, S. Sengupta, Phys. Rev. B 24, 876 (1981); D. Sen,
S.K. Sarkar, S. Sengupta, D. Roy, Phys. Status Solidi 115, 593 (1983).

[25] S.K. Sarkar, S.K. Das, D. Roy, S. Sengupta, Phys. Status Solidi B 83, 615 (1977).
[26] J. Hafner, J. Phys. F, Metal Phys. 5, 1439 (1975).
{27] A. Sarkar, D. Sen, Acta Phys. Pol. A 91, 1081 (1997).

[28] W.A. Harrison, Pseudopotentials in the Theory of Metals, Benjamin Inc., New
York 1966, p. 39.

[29] D.J.W. Geldart, S.H. Vosko, Can. J. Phys. 44, 2137 (1966).
[30] S. Ichimaru, K. Utsumi, Phys. Rev. B 24, 7385 (1981).



662 S. Haldar, A. Sarkar, D. Sen

[31] A. Sarkar, D. Sen, S. Haldar, D. Roy, Int. J. Mod. Phys. Lett. 12, 639 (1998).

[32] N.E. Cusack, The Physics of Structural Disordered Matter: an Introduction, IOP
Publ. Ltd., Bristol 1987, p. 104.

[33] J. Hafner, Liquid Metals, Inst. Phys. Conf. Ser. No. 30, Bristol 1976, p. 102.

[34] M. Hasegawa, J. Phys. F, Metal Phys. 6, 649 (1976).

[35] D. Sen, A. Sarkar, S. Haldar, Condensed Matter Days, Jadavpur Univ., Calcutta
1999.
(36] L. Reatto, Philos. Mag. 58, 37 (1988).

[37] R. Taylor, J. Phys. F 8, 1699 (1978).
[38] S. Haldar, unpublished.
[39] K. Hoshino, H. Ugawa, M. Watabe, J. Phys. Soc. Japan 61, 2182 (1992).

[40] Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Phys. Rev. B 59,
3393 (1999).



