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MAGNETIC TRANSLATIONS FOR A SPATIALLY
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It is shown that in the case of a free electron in a spatially periodic
magnetic field the concept of magnetic translations operators is still valid
and, moreover, these operators can be defined in the same way as for a
Bloch electron in a uniform magnetic field. The results can be a useful tool
in the investigation of recently observed phenomena in 2D electron gas with
spatially modulated density.
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1. Introduction

Recently there has been considerable interest, both experimentally [1] and
theoretically [2, 3], in the properties of charged particles in different inhomogeneous
magnetic field profiles, which has been studied. Since properties of the strongly
correlated phases can be obtained from the photoluminescence spectra [2], much
effort has been devoted to this technique [4]. This problem is strongly related to
the Anderson localization of electrons and, therefore, is important in investigations
of high-Τc superconductors and composíte-fermions in the quantum Hall effect.
Some recent experiments have shown that variation of density in two-dimensional
electron systems lead to a fictitious periodic magnetic field [5] and a geometric
resonance of the classical cyclotron orbit and the field period. A theory of this
effect has been lately proposed by Zimbovskaya and Birman [6].

The aim of this paper is to consider a possibility of introducing magnetic
translation operators in the case of a spatially periodic magnetic field and, if this
introduction is possible, to determine their form. Some general considerations of
two-dimensional quantum systems in a singular vector potential A were presented
by Arai [7], who generalized some concepts to nonuniform magnetic fields for con-
tinuous quantum systems and presented a method of reduction to lattice quantum
systems. A special class of introduced operators ΤA leave the Hilbert space L2 (1 2 )
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(or 1 2 (3 2 ) for lattice systems) invariant, so it is possible to construct a continu-
ous version of a Hamiltonian of the Hofstader type [8]. The problem analyzed in
the present work is simpler, however it is directly related with the above men-
tioned phenomena. It is shown that magnetic translation operators introduced
independently by Fishbeck [9], Brown [10], and Zak [11] for an electron in a uni-
form magnetic field and a periodic potential can be also applied in the case of a
spatially periodic magnetic field. In the simplest case a free electron is considered.

In the next section a brief summary of the main results for a uniform mag-
netic field is given, whereas the problem is solved in Sec. 3. Some remarks are
presented in the last section.

2. Bloch electron in homogeneous magnetic field

For the sake of simplicity it is assumed that an electron can move in the
two-dimensional plane xy, whereas the magnetic field Η = Η is perpendicular
to it. Therefore, only the components Ax and Α  of a vector potential Α are
relevant. In both cases, i.e. for homogeneous and inhomogeneous magnetic fields,
the Hamiltonian is given by the well-known formula

The only requirement is that V(r) is a periodic function of r Ε 1Z 2 . Positions of
crystal nodes are determined by the vectors R of the two-dimensional translation
group 7 isomorphic to i x 2, so they will be often replaced by pairs (n x , ny )
of integers, i.e. by their coordinates in the crystal base { a 1 , a2 }. Since a point
group symmetry is not taken into account, the square lattice with a 1 1 a2 and
α1 = α 2 = α is considered.

2.1. Α form of the vector potential

For a constant and uniform magnetic field the vector potential Α can be
written as linear function of the position vector r [12]. Moreover, the coordinates
Ax and Α  can be chosen in such a way that they do not depend on x and y ,

respectively†. Therefore in the most general case one obtains

The real numbers α, β have to satisfy

Η =β—α

for a given magnitude Η of the magnetic field. Of course, this form includes the
antisymmetric gauge (r x Η)/2 for α = —β = —Η/2 and the Landau gauge for
β = Η, α = 0.

†This condition is stronger than the radiation gauge V • Α = 0.
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2.2. The symmetry of a problem

The periodicity of V(r) yields the two-dimensional translation group Τ
B x Ζ as the symmetry group of the Hamiltonian. Therefore, one can introduce
concepts of quantized quasi-momentum, energy bands and Bloch electrons. Irre-
ducible representations of Τ label energy levels of Ή. However, in the presence
of the magnetic field Η , at least except for special values of H, projective rep-
resentations have to be used and their factor systems depend on the magnetic
flux through the unit crystal cell. The periodic boundary conditions imposed on
(projective) representation T(R) leads to magnetic flux quantization and the con-
cept of magnetic cells (or magnetic periodicity) [10, 12]. The periodic boundary
conditions are also responsible for choosing the magnetic field perpendicular to a
crystal plane [10, 11, 13]. It should be underlined that in Zak's approach projective
representations of Τ are replaced by vector representations of a central extension
of Τ by a group of factors included in U(1). Of course, these two approaches are
equivalent.

2.3. Projective representations

Operators of a projective irreducible representation of Τ which commute
with X can be chosen as [9-12, 14]

where A' is a vector potential associated with A and, in these simplified consid-
erations, given as

The commutation T(R) with 1-ί follows from the fact that the coordinates of
π = p— A commute with the coordinates of π' = p— A' [10-12]. Moreover, the
commutators [π, π], [π, π] etc. are numbers, so they commute with any other
operator. This fact is very important in the derivation of a factor system for the
representation T(R). This factor system and the group-theoretical commutator
T(R)Τ(R')Τ(R) - 1 T(R') - 1 depend only on the magnitude H, not on the form of
the vector potential. However, working with a local gauge A'R one can change a
factor system, but the commutator is unaffected (is gauge-independent) [15].

2.4. Movement of a Bloch electron

In the case of homogeneous magnetic field an electron moves around the cy-
clotron orbit with coordinates of the center given by operators π'y , π. This move-
ment is quantized and is related to the broadening of the Landau levels [10, 16].

3. homogeneous magnetic field

In order to keep the symmetry described as the translation group one has to
assume that the non-constant terms in the magnetic field magnitude are periodic
with respect tor and y coordinates. Therefore, π 2 , the generalized kinetic term
of the Hamiltonian (1), is invariant under R E Τ and, at least in the first-order
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approximation, the potential V(r) can be omitted. Applying the Fourier transform,
a periodic magnetic field can be written as a sum of the sine and cosine functions
sin kxx, sin ky y (or exp(ik • r), if one prefers the complex analysis), so, to simplify
the problem, it is assumed that

where k = k, = ky = 2π/α.

3.1. The vector potential

For the magnetic field given by (5) the vector potential Α can be chosen
in many gauge invariant forms. For the sake of clarity the simplest form in the
radiation gauge (V • Α = 0) is assumed

3.2. The symmetry group

Due to the periodicity of Η the symmetry group is still T Ζ x Ζ. Its
irreducible representations should label eigenspaces of H. There is, however, one
problem: "Does it suffice to consider projective representations or, due to higher
terms of x and y in Α, Α, and H, some more complex structure should be used?"
Within the frame of Zak's approach it may mean that one has to investigate
non-Abelian extensions, for example. It seems that when for Α being linear func-
tion of r the second cohomology group (related with projective representations or,
equivalently, with central extensions) comes into play, then for  Α, Α  being sec-
ond order functions of x, y the third cohomology group should be considered etc.
There are some hints from mathematics and physics which indicate that it suffices
to limit consideration to projective representations (i.e. the second cohomology
group).

At first, we are interested in Α and H expressed by the (co-)sine or other
periodic functions with an infinite Taylor expansion, so — if the order of a coho-
mology group depends on the order of functions — the cohomology group of the
infinite order should be taken into account. Moreover, factor systems of projective
representations in the case of a homogeneous magnetic field depend on the mag-
netic flux through the unit crystal cell. This quantity is always a number calculated
as an integral over the unit cell of the product H(x, y)dxdy (or as an integral over
the edges of a cell f .(r) • dr [7]). Such an integral depends only on the con-
stant term Η0 since the integration of periodic terms ‡ gives zero. The cohomology
group of order n demands considerations of the n-th co-boundaries and co-cycles,
which involve n lattice vectors. It seems it would be necessary in the case of a
hypothetical "field" being a tensor of rank n (Fxyz Gxyzt, etc.) — in the case of

In this place a "periodic term" denotes all but a constant term of the Fourier transform.
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magnetic field, which can be described by the tensor Η xy , the most important are
loops (drawn in two dimensions) encircling the magnetic flux (a one-dimensional
object). At last, there are no well-investigated group-theoretical generalizations of
non-Abelian extensions corresponding to fourth, fifth etc. cohomology groups (at
least the author is not aware of such considerations).

3.3. Projective representations

In this section a form projective representation Τ of Τ is derived. This rep-
resentation should commute with H and the results for the uniform magnetic field
have to be revealed in the limit Η1 → Ο.

Łet us assume that operators of a projective representation have the following
form:

where a form of the operator iv' depends on Α and in the limit H 1 → 0 we have
π'=p —(e/c)A'with A' defined in the previous section by Eq. (4). Due to the

periodicity of V(r) (moreover, V(r) = 0is assumed in the simplest approxima-
tion) it is enough to calculate a commutator [T(R), ι 2]. If πx and πy commute
with T(R) then also H does. The condition [T(R), fix] = [T(R), πy] = 0 allows
also labeling of eigenspaces of the canonical momenta πx and πy by irreducible
projective representations of Τ. Substituting P = — ι/ħπ' • Rone can write

The last commutator equals

These formulae yield that Cl = [P, η] = 0 is a sufficient condition for
[T(R),H] = Ο. For example, it can be solved in the case of the homogeneous
magnetic field, i.e. when iv is a linear function of x and y, and this solution was
found by Brown and Zak and then generalized to any linear vector potential by the
author (see also [9]). However, the case of the inhomogeneous magnetic field yields
A being a square (or higher order) function of coordinates x, y and the condition
Cl = 0 does not lead to any non-trivial solutions for P. Therefore, the formula (9)
has to be substituted to the condition (8) and the solution has to be found in this
more general case. Therefore, one obtains
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Therefore, the sum of commutators Cξn has to be equal to zero, which, is satisfied
by the special solution Cl = Ο. After the substitution 4 = —i1 — (e/c)Α'ξ the
operator P = —i/ħΧπ'x — i/ħΥπ'y, whereΧ =nxα, Υ = nyα are coordinates ofR,
decomposes into two summands

Therefore, in a general case, we have

If one assumes that áxΑx = δ Α = 0, this can be simplified to

Example. Let us consider the case Α x = αy and Αy = βx + Η 1 χ 2 /2. We are
looking for a solution in a similar form, i.e. determined by an associated vector
potential A' being a square function of x and y , so we assume that

Equation (13) gives

Since Cl ψ 0 in a general case, we have to calculate C? (note that only P 1 is
relevant):

Therefore CI = 0 forl > 3 and the commutator [exp P, πξ] = 0 if Cl + CZ /2 = 0
for any x, y , Χ, Υ. For = x we obtain

It is easy to notice that a solution for = y and Η1 ψ 0 can be obtained only
when α" = 0 and Χ = Ο. This means that the (magnetic) translations T([0, Y])
commute with the Hamiltonian. This is not surprising since the magnetic field
Η = (β — α) + Η1 χ is not periodic in the x-th direction.

This example shows that the linear term in Αξ (the constant term in H)
always appears in Α in the same way as in the case of the homogeneous magnetic
field. Therefore, for the vector potential given by Eq. (6) we choose the associated
potential in the following form:

where the functions f and g will be determined from the commutation conditions.
Substituting into Eq. (13) we obtain
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Next the commutators will be determined with the use of the operator Ρ1 , see
Eq. (11), and derivatives of each function will be considered separately. The first
part of C , up to the constant factor —H1e/kc , gives the following series:

kY cos(ky), (kY) 2 sin(ky), —(kY)3 cos(ky),

—(kY) 4 sin(ky), (kY) 5 cos(ky), .. .

Decomposing it into two series with cos(ky) and sin(ky), respectively, and substi-
tuting it into the infinite sum in Eq. (10) one obtains (taking into account that
k = 2π/α and Y = ny α, so kY = 2ny π)

The same result is obtained for the part of Ci containing cos(kx). Therefore, the
operators T(R) commute with the Hamiltonian for the triνial functions

.f (x, y) Ξ g(χ, y) ≡ 0.

This is not so surprising if we recall that the factor system depends on the magnetic
flux through a lattice cell [15] and the periodic part of Η gives no input to it. Such
a solution leads to an interesting difference between Η and H': the first is periodic,
whereas the second is uniform since H' = —Η0 . This difference is more evident if
we take into account the vector potentials Α and A': the original one satisfies the
inhomogeneous wave equation [17]:

The obtained solution implies that a spatially periodic magnetic field does
not require any changes in the group of magnetic translations (projective repre-
sentations of the translation group).

3.4. Other solutions

It is interesting to check what happens in the case when Α' depends on x
and y in a similar way as Aξ . To begin with we choose

Such a choice leads to an associated magnetic field H' equal to

H' = (α — β) — H1[cos(kx) + cos(ky)] = —H,

as we have obtained in the case of the homogeneous magnetic field (cf. [15]).
The series of commutators Cxl containing g(x) and its derivatives is calculated as
follows (up to the constant factor H1Ye/kXc) :

kX cos(kx), (kX) 2 sin(kx), —(kX) 3 cos(kx),

—(kX) 4 sin(kx), (kX) 5 cos(kx), ...
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Substituting into the infinite sum in Eq. (10) one obtains, as in Eq. (16),
cos(ky) sin(kY) -F sin(ky)[1 — cos(kY)] = 0.

However, this solution has been obtained after division by X, so it is valid only
for X ψ 0. Analogous considerations for f(y) lead to the same result, but now
Y ≠ 0. Therefore, the potential obtained for functions (17) determines the opera-
tors commuting with the Hamiltonian only for X, Y ≠ 0 or X = Y = 0. Exclusion
of the axis X = 0 is caused by the lack of one power of X. It can be revealed if
the magnetic translations are defined locally [15], i.e. the form of functions f and
g will depend on X and Y. The simplest solution is to put

Another way is realized by switching f and g, so

In this case, however, H' = —H0 (without the periodic term) and, moreover the
vector potential A' is no longer written in the radiation gauge.

3.5. Movement of a Bloch electron

The approximated considerations of an electron in spatially inhomogeneous
field presented in many textbooks, e.g. [17], show that for small values of VH a
charged particle gains an additional velocity perpendicular to H and VH. Since
VH is perpendicular to lines on which H is constant then it is most likely that the
orbit center will move along these lines. Results of simple numerical simulations
(only the Lorentz force for a periodic magnetic field has been taken into account)
seem to confirm this picture. However, a system is very unstable and actual be-
havior strongly dependson the starting values and accuracy. When the time-step

Fig. 1. A trajectory of the orbit center for a large orbit radius p> a.
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has been relatively large (ωΔt ≈ 0.01), the center moved towards the maximum
(for large H) or minimum (for small H) of the function H(x, y). This movement
was almost negligible for small values of Δt (ωΔt 0.0001). Α critical value of
H depends on the particle velocity and corresponds to the orbit diameter 2p close
to the field period, cf. [5]. It could be expected that in the limit case Δt —> dt
the orbit center would be "stabilized" on an "equipotential" line H = const. The
other conclusions are almost obvious: (i) in a strong magnetic field (a very small
orbit diameter) the movement of the orbit center is much slower since the particle
moves in almost constant magnetic field; (ii) in the case of small magnetic field
(a large orbit diameter) the particle moves in regions of different magnetic field
magnitudes and the orbit center trajectory is not a smooth line (see Fig. 1).

4. Fina1 remarks

It has been shown that a spatially periodic magnetic field leads to the same
magnetic translation operators as in the case of a uniform field and a periodic
potential V(r). Since the results obtained do not depend on an actual value
of k, then they are valid for any periodic function of x and y written as its Fourier
transform. When a periodic potential V(r) is also present then our considerations
are applicable to the case of commensurate periods of H and V only. The results of
numerical simulations suggest that the orbit center moves along an "equipotentia"'
line H = const. This movement is more stable in the case of relatively large fields,
i.e. for the orbit radius p smaller than the field period α. The magnetic translation
operators cannot be interpreted as the position of the orbit center [15, 18], since
the latter is not a constant of motion. They rather correspond to the center of the
orbit center trajectory. It should be underlined that this work does not present a
theory of the observed effects [5], but provides a mathematical tool, which can be
useful in such investigations.
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