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Bias dependence of the tunnel magnetoresistance in simple planar fer-
romagnetic junctions is considered theoretically within the one-band model.
The limit of sequential tunnelling in double junctions with a non-magnetic
central electrode is studied as well. In this case tunnel magnetoresistance ex-
ists only when the spin relaxation time due to spin- flip scattering processes
inside the central electrode is sufficiently long.

PACS numbers: 72.15.Gd, 73.40.Gk, 75.70.—i

The tunnel magnetoresistance (TMR) effect is known since the first exper-
imental observation by Julliere [1], who found a change of nearly 14 per cent at
T = 4.2 K in the tunnel conductance in Co/Ge/Fe junctions, when the magnetic
moments of ferromagnetic electrodes rotated from antiparallel to parallel align-
ment. The effect is usually described by the ratio ΔR/Rρ ≡ (RAP — RP )/RP ,
where RAP and RP are the junction resistances in the antiparallel and parallel
magnetic configurations, respectively. Similar effect was also reported in other
ferromagnetic junctions [2], and recent experimental data show additionally that
TMR significantly decreases with increasing bias voltage [3].

In this paper we consider TMR within the spin-polarised free-electron-like
one-band model. The zero bias limit, V = 0, of this model was studied by Slon-
czewski [4]. Here, we extend his description to a finite voltage by taking into
account the bias dependence of the barrier shape and height. The description is
also extended to double junctions, in which both external electrodes are ferro-
magnetic, while the central electrode is non-magnetic. Accordingly, we assume a
rectangular barrier at V = 0, which changes into a trapezoidal one when a bias
voltage V is applied. Let us consider first the transmission  probability for an elec-
tron of energy ε and spin σ (σ = r, J.), incident normally on the barrier, and assume
that tunnelling processes conserve electron spin. In strictly parallel or antiparal-
lel configurations electrons with opposite spins can be considered separately and
the tunnelling probability is then determined by a solution of the one-dimensional
Schrödinger equation. From the continuity conditions of the electron wave function
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and its first derivative at the electrode/barrier interfaces one finds the following
transmission coefficient for the μ-th configuration (μ = ΑΡ, P) [5]:

where (for the electrodes made of the same ferromagnet)

In the above equations Ai(z) and Bi(z) are the Airy functions, Ai'(z) and Bi'(z)
are their first derivatives, 2Δ denotes spin splitting of the electron band, Ρσ = 1
(ρσ = -1)for σ = fi (σ=1), ρμ=1(ρμ=-1)forμ=Ρ(μ=AΡ),and
denotes the electron mass. Apart from this, the following definitions have been
introduced:

where EF is the Fermi energy measured from the middle point between the edges
of the two spin subbands, U is the barrier height measured from the Fermi level
and —e is the electron charge.

Having found the transmission coeffIcient one can calculate the tunneling
current. In real systems there are many electrons incident on the barrier from both
sides and the net current is a sum of contributions from all tunnelling processes [6].
When the electrode/barrier interfaces are flat, the in-plane component k11 of the
electron wave vector k is conserved in tunnelling events. At T = Ο the net electric
current per unit area can be then calculated from the formula
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where ε is now the energy associated with normal motion of the electron, whereas
Ε0σμ = —ρσΔ for the parallel configuration (μ P) and Ε0 σμ = Δ- δσ ,↑eV
for the antiparallel configuration (μ = AP). The junction resistance can be then
calculated as Rμ = V/jμ A (A is the junction area), and TMR as ΔR/Rp.

In Fig. 1 we show TMR as a function of the bias voltage. For the parameters
assumed there TMR decreases with increasing V. This behaviour of TMR, how-
ever, is not universal within the model considered here. An opposite behaviour, i.e.
increasing TMR with increasing voltage, occurs in a certain range of small barrier
heights.

Fig. 1. Bias dependence of TMR in a single planar junction for two different thick-
nesses of the barrier. The other parameters assumed here are: ΕF = 2 eV, U = 3 eV,
Δ = 1.5 eV, and d as indicated.
Fig. 2. Bias dependence of TMR in a double planar junction with a non-magnetic cen-
tral electrode and with two identical barriers, calculated in the limit of infinite spin
relaxation time. The other parameters assumed here are: ΕF = 2 eV, U = 3 eV,

= 1.5 eV, and d as indicated.

Let us consider now tunnelling in a double junction with a non-magnetic
central electrode. In the 8equential tunnelling limit the electron tunnelling from the
source to sink electrodes is a two-stage process; in the first stage a given electron
tunnels through one of the barriers, while in the second stage another electron
tunnels through the second barrier. For simplicity we neglect quantization of the
energy levels in the central electrode. There is no TMR in the limit of fast energy
and spin relaxations. When, however, the spin relaxation time inside the central
electrode is long, then the spin asymmetry in tunnelling rates through the barriers
gives rise to some spin accumulation in the central electrode. In that limit electric
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current is conserved for each spin channel separately. Spin accumulation depends
on the magnetic configuration of the junction, and this dependence can lead to
TMR. In Fig. 2 we show the bias dependence of TMR in the limit of infinite spin
relaxation time inside the non-magnetic central electrode. As before, the effect
decreases with increasing voltage.
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