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1. Introduction

This paper concerns mainly the magnetocaloric behaviour of ferromagnetic
materials, which have a phonon system and a magnon system mutually interacting.
Our earlier calculations [1, 2] described the thermodynamic dissipation of energy
evoked by an increase in the external magnetic field in an adiabatically isolated
system. The change of sign of the magnetocaloric effect was deduced in the vicinity
of the magnetic phase transitions [1, 3, 4]. The increase in magnetic field to the
critical value Hc in the direction perpendicular to the easy anisotropic axis of
a ferromagnetic material causes the magnetization to turn and saturate in the
direction of the external magnetic field and it can also result in a decrease in
temperature (the sign of magnetocaloric effect becomes negative). In Ref. [2] it was
shown that a similar behaviour can be expected also in the case of superconductors
of type II in the mixed state. A change of sign of the magnetocaloric effect in
superconductors can be expected near the transition from a superconducting state
into a state of normal conductivity. In this case the transfer of energy between
collective excitations of crystalline and vortex lattices will be responsible for the
negative magnetocaloric effect.

2. CalculatiOns Of the magnetOcalOric effect

One of the open questions in our calculations is the influence of anisotropy.
The magnetic anisotropy creates different conditions for the dissipation of energy
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below and above the magnetic phase transition. The anisotropy of the atomic
lattice which forms the basis for phonon-type excitations can also be important
and this remark is the preliminary attempt to study the influence of non-magnetic
anisotropy on the magnetocaloric effect. We turned our attention to the variation of
elastic constants of the material and studied the dependence of the magnetocaloric
effect on the ratio of the longitudinal and transversal speed of elastic waves, which
is a function of Poisson's elastic constant. We have chosen here this parameter for
practical reasons. Our formulae for the energies of collective excitations (we shall
call them quasimagnons and quasiphonons) depend on the ratio of transversal
and longitudinal velocity of sound. We posed the following question: how does the
magnetocaloric effect depend on the elastic constants? A dependence was found
by the iterative numerical modelling, is given in Fig. 1 and is described in the
following text.

In the vicinity of the magnetic phase transition we forecasted in [1, 2] an
anomalous behaviour of quasiphonons. For the specific directions the energy of
quasiphonons approaches zero, which could be understood as an anomalous de-
crease in the speed of sound waves. A similar effect could be possible also for
the vortex lattice excitations in superconducting materials. Interactions of sound
waves with the vortex lattice is now an interesting research field and there is a
hope that it can contribute to understanding of the superconductivity in new ma-
terials [5]. From this point of view it is therefore also interesting to study the
analogy between magnetocaloric behaviour of superconductors and classical mag-
netic materials.

The decrease in quasiparticle energy leads to an anomalously higher pop-
ulation of corresponding quasiparticles which can influence the magnetocaloric
behaviour of the whole system. The population of bosons will grow substantially
with decreasing energy. The energy Ε accumulated in collective quasiparticle-like
excitations is

(where ω is the energy of quasiρhonon with wave vector k, kB is Boltzmann's
constant and T is a temperature of crystalline lattice) and it will be still bigger
than in the case of "normal" non-zero quasiparticle energies.

The formulae for the quasiparticle energies and the model Hamiltonian can
be found in [1] and [2] (but without explanatory remarks). We made an

approximative diagonalisation of the Hamiltonian. (Calculations with better Hamiltonian
are now planned in collaboration with experts from Wroclaw.) The diagonalisation
was done in two steps. We found separately operators for magnons and phonons;
for magnons from the magnetic part of the Hamiltonian and for phonons from the
term corresponding to a cubic isotropic material. The second step of the diago-
nalisation was done by including an explicit term for magnetoelastic interaction
in the Hamiltonian. We used the simplest formula which combines together the
elasticity of a crystalline lattice and magnetic moments M

magnetοelastic —H =9MiMkuik
,

where g is magnetoelastic constant and uik is the tensor of deformation.
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Magnon and phonon operators obtained from the first step of the diago-
nalisation procedure were substituted in the magnetoelastic term and the result-
ing Hamiltonian was approximately diagonalised by the standard procedure (Bo-
golyubov transformation). The condition of solubility of the system of 8 equations
(the secular equation) made it possible to find analytically the energies of quasi-
magnons and quasiphonons. A general solution was out of reach, but we were able
to find approximative solutions for the special directions and relatively weak in-
teraction between magnetic and elastic system (the constant of uniaxial magnetic
anisotropy β should be significantly larger than the constant g in the magneto-
elastic term). The "individuality" of phonons and the "individuality" of magnons
is in this case preserved and we looked for the solution of the secular equation in
the phonon-like and magnon-like shapes. For quasiphonons ω = vk (the function
v has to be found and now it depends also on the external magnetic field), and for
quasimagnons ε = ε0(k) 2 .

The formulae for the quasimagnon and quasiphonon energies are given in [2]
and we shall reproduce here only the corrected term for two quasiphonon branches
which contains in [2] the small printing error. The energy of one branch of quasi-
phonons tends for the z and x directions to zero in the neighbourhood of our mag-
netic phase transition and it has important consequences for the magnetocaloric
effect

(ct , cl are transverse and longitudinal sound speeds). The magnetocaloric effect was
calculated using the standard formula for entropy for the case of an adiabatically
isolated sample and all modes of quasiphonons and quasimagnons. The formulae
for energies of quasiparticles are of course valid only for small wave vectors, but
the influence of larger wave vectors is negligible in the case that the energy of
quasiparticle is considerably smaller than kBT (in our calculations T 20 K).

3. Results

The example of a dependence of the magnetocaloric effect on the variation
of the ratio cl/ct is shown in Fig. 1. A similar dependence of a lattice temperature
on an external magnetic field could be expected also in the superconductors of
the second type near the transition to the normal conductivity — enforced by
the growing magnetic field — because the energy of collective excitations of the
vortex lattice tends to zero. Energy is transferred from the thermal vibrations into
collective excitations of the vortex lattice and the sign of the magnetocaloric effect
is going to be negative. In Ref. [2] are presented some preliminary calculations of
these phenomena.
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Fig. 1. Magnetocaloric effect. Δh is the external magnetic field in relative units (Δh = 0
is in the phase transition H = Hc). The lattice temperature T goes down. to 20 Κ.
Q = ClongitudinaI /Ctransνersal•

The curves in Fig. 1 show that the maximal decrease in temperature can be
expected for small q. The minimal change of lattice temperature is for q 	^.

From the values of elastic constants in real physical materials (qtungsten = 1.57,
qsteel = 1.8, qleaa = 3.3) is possible to see that lower limit for parameter q is a bit
greater than 2. Figure 1 further shows that the dependence of the magnetocaloric
effect on the parameter q is nonlinear.

4. Concluding remarks
The dependence of a size and sign of the magnetocaloric effect on the non-

-magnetic elastic characteristic of materials presented in this remark is only infor-
mative and preliminary and we hope that the planned collaboration with physicists
from Wroclaw will provide results for real materials. We believe that such study
of magnetocaloric effect is an effective tool for better understanding of dissipative
processes especially in new superconducting materials. We believe that the quasi-
particle approach of second quantisation, used also in our work, is the proper way
to go.
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