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In the paper the possibility of stabilization of the long-range magnetic
order in a two-dimensional ferromagnetic with  one-ion easy-plane anisotropy
is explored. It is shown that at the presence of a small anisotropy in a
two-dimensional ferromagnetic the long-range magnetic order is stabilized
by magnetoelastic interaction. If one-ion anisotropy is comparable or even
exceeds the exchange interaction in the system there exists a long-range
non-vectorial quadrupolar tensorial magnetic order.

PACS numbers: 75.10.—b, 75.30.Kz

1. Introduction

The behaviour of two-dimensional isotropic ferromagneis or ferromagnetics
with one-ion easy-plane type anisotropy differs from behaviour of three-dimensional
magnetics. This difference lies in the lack of the long-range magnetic order, and
also in the existence of the phase transition of a special type: at temperatures lower
than the critical temperature in the system there takes place coupling of solitons
resulting in arising vortex-antivortex pairs (the Berezinsky phase), and with the
increase in temperature the vortex pairs dissociate [1-4].

As was shown in [5, 6], the account of relativistic interactions like mag-
netodipole or magnetoelastic interaction leads to modification of the law of a
dispersion of elementary excitations. With the account of magnetodipole interac-
tion the law of dispersion turns to be a square root one and with the account of
magnetoelastic interaction in a spectrum there is a magnetoelastic gap. Such re-
organization of spectra essentially reduces thermal fluctuations in the system and
by that stabilizes the long-range magnetic order.

(355)
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Such approach to examination of the behaviour of two-dimensional ferro-
magnetics is valid when the quantum fluctuations of spin are small and the basic
role is played by thermal fluctuations, i.e. in the case when one-ion anisotropy is
small (β K J0, where ßis a constant of anisotropy, J0 is a zero Fourier-component
of exchange integral).

Another situation can be realized in two-dimensional magnetics with great
value of one-ion anisotropy (β/4 > J0), the so-called strongly anisotropic magnet-
ics. In such systems interesting quantum effects are predicted, such as the existence
of non-magnetized (quadrupolar) phases with zero mean value of spin (but with
non-zero mean value of bilinear combinations of projections of spin), extra branches
of magnons, etc. [7].

Let us explore the properties of a two-dimensional easy-plane ferromagnetic,
assuming that the magnetoelastic interaction stabilizes the long-range magnetic
order. We shall consider two different cases: the case of small and great one-ion
anisotropy. The account of great one-ion anisotropy leads to appearance of various
pure quantum effects, that in its turn requires the use of an adequate mathemat-
ical means. It is convenient in this situation to use the technique of Hubbard's
operators [7, 8].

2. The mode1 and basis results

We shall present the Hamiltonian of the system in study in the following
form:

where J(n — n') > 0 is an exchange integral, Sin is a spin operator in site n, β > 0
is a constant of one-ion anisotropy, λ is a constant of magnetoelastic interaction,
uij is a symmetric part of components of deformations tensor, E is a modulus of
elasticity, σ is a Poisson coefficient.

The system described by Hamiltonian (1) represents an easy-plane ferromag-
netic (XOZ is a basis plane). The two-dimensionality of a system, as well as earlier,
is taken into account in elastic and magnetoelastic energies (uzz = uz y = uzx = 0).
To simplify further calculations we shall assume that the spin of a magnetic ion
S = 1.

Separating the mean field in the exchange part of (1) we shall receive the
one-ion Hamiltonian

where Jz = J0(Sz). The solution of one-ion problem with Hamiltonian (2) enables
us to obtain the energy levels of a magnetic ion
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The spontaneous deformations ui° ) are determined from the requirement of a
minimum of a free-energy density, and have the form

The connection of spin operators with Hubbard's ones [91 looks like

where ΧΜ'Μ= |Ψ(M'))(Ψ(M)| are Hubbard's operators, describing the transition
of a magnetic ion from a state M' to a state Μ.

From (4) it is easy to find a magnetization per unit ((S2 )), which at low
temperatures is equal to

This equation on (Sz ) has the following solutions:

For the case of small anisotropy the solution (6) is valid. If β/4 > J0, the
second solution is non-physical, and it is necessary to consider solution (5). Thus,
in strongly anisotropic easy-plane magnetics even at low temperatures the mag-
netization is equal to zero. However in this case the quadrupolar order parameter
q = 3((Sz ) 2 ) — S(S + 1) differs from zero and at finite temperatures is equal to 1.
This parameter weakly depends on temperature, and tends to zero only at T → ∞ :

Thus, it is possible to assume that in the considered system the quadrupolar
phase (QU) is realizable and remains stable at wide temperature interval [8].



where 00 = λ 2 (1 + σ)/2Ε is a parameter of magnetoelastic interaction.
The expressions (9), (10) determine the spectra of quasimagnoris at various

values of the constant of one-ion anisotropy. A quasiphonon spectrum (t-polariza-
tion, k OZ), obtained from the solution of the dispersion equation, describes
only weak renormalization of the velocity of sound

(it is supposed that β» λ).
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To prove the validity of the expressed above statement, let us explore the
behaviour of fluctuation of magnetization. To evaluate its value it is necessary
beforehand to calculate the spectra of elementary excitations of the system.

Since in our model the magnetoelastic interaction is taken into account, in
this case it is impossible to consider magnetic (magnons) and elastic excitations
(phonons) as independent one, because in the system there will be realized hy-
bridised excitation-magnetoelastic waves [10].

The spectra of elementary excitations of a system are determined by the
poles of Green's function, which we shall define as follows:

Here T is a time-ordering operator, Χ, (τ) is a Hubbard operator in Heisenberg's
representation. We shall carry out further evaluations in the mean field approx-
imation, therefore further we need only cross part of an exchange Hamiltonian,
which looks like

where

The functions γ||(┴)(α)are determined from the connection of spin operators
with Hubbard's operators. The dispersion equation of magnetoelastic waves is
described in [10]. The quasimagnon spectrum obtained from this equation looks
like

where b 0 = 3λ 2 /4Ε.
In the case β K J0, (Sz) ti 1 (small anisotropy), we obtain the expression

where α = J0R20, R0 is a radius of interaction.
For the case of great one-ion anisotropy (β/4 ≥ J0, (Sz) = 0) we have
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As is evident from expressions (10), (11), the spectra of elementary excita-
tions remain stable in all temperature intervals, i.e. there is no phase transition in
the system.

Let us explore the fluctuations of a magnetic moment in the basis plane, for
example ((S^) 2 ). We shall use the bosonization method [11] and rewrite the oper-
ator Sx in terms of rising and lowering Bose operators αt, αn . For the fluctuation
of a magnetic moment we obtain

It is possible to present the expression included in (12), in the following form:

where uk and vk are the coefficients of a u—v-transformation, and υ 2k  + ν2k =
(Ε 1 0 — J0)/ω(k). One can easily see that this integral converges in a lower limit.

At β « J0 the Curie temperature weakly depends on the value of an
anisotropy constant, and the decisive role is still played by magnetoelasticity

At β » J0 and k — 0 the integral (11) exponentially tends to zero. Thus, the
thermal fluctuations in strongly anisotropic easy-plane ferromagnetic at arbitrary
temperatures remain finite and small. However, the Curie temperature of such
system tends to infinity. Indeed, as in the quadrupolar phase in the plane XOZ
there is no chosen quantization axis, then it is possible to accept ((S 2 ) 2 ) as a
value describing fluctuation of a magnetic moment, which, as is obvious from (7),
is always greater than zero. If we define the Curie temperature as the temperature,
at which the order parameter q is equal to zero, still from (7), it is possible to see
that ΤC→∞ .

3. Conclusions

The obtained results testify that the behaviour of 2D strongly anisotropic
easy-plane magnetics is specific and significally differs from the behaviour of
weakly anisotropic systems.

In weakly anisotropic systems the long-range magnetic order is stabilized by
magnetoelastic interaction and the one-ion anisotropy weakly affects the magni-
tude of fluctuations of a magnetic moment.

In strongly anisotropic magnetics the long-range magnetic order is also re-
alized, however this order is not a ferromagnetic, but quadrupolar one. Thus, the
spectra of elementary excitations remain stable in all intervals of temperature,
i.e. the system does not undergo the phase transition. At first sight, such be-
haviour of a system contradicts a number of theorems describing the behaviour of
two-dimensional magnetics. According to these theorems in a two-dimensional fer-
romagnetic there is no long-range magnetic order. However then it was found that
in two-dimensional easy-plane magnetics nevertheless there is an original phase
transition, the so-called Berezinsky—Kosterlitz—Thouless (BKT) phase transition.



360	 Υu.Ν. Mitsay et al.

At the temperature of a BKT-transition the correlation radius diverges, however
the character of a divergence is other than in three-dimensional magnetics.

The apparent inconsistency of the obtained results with classical ones can
be eliminated as follows.

It is necessary to remind that the results about the absence of the magnetic
order in two-dimensional magnetics are valid for systems with the spontaneously
violated continuous symmetry. In our case, considered by us, the presence of a
great one-ion anisotropy means that the system has a discrete symmetry group.
For systems with the violated discrete symmetry the above mentioned reasonings
are not applicable.

Note that the authors [12] have described the BKT—QU phase transition
in strongly anisotropic easy-plane ferromagnetic and have found that Τ c α (S),
where (S) « 1. Since in our case (S) = 0 we do not consider the vortex phases.
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