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A direct method and ab initio force constants were used to calculate
phonon dispersion curves and phonon density in Al. The force constants
were determined from the Hellmann—Feynman forces induced by the dis-
placement of an atom in the 2 x 2 x 2 fcc crystallographic supercell. This
size of the supercell gives exact phonon frequencies at Γ, X, L, W points
of the Brillouin zone. The calculated phonon dispersion curves are in good
agreement with the experimental data.

PACS numbers: 63.20.—e, 71.15.Nc 	.

The vibrational properties determine a wide range of macroscopic behaviour
of solids, e.g. specific heat and the sound velocity. In addition, very low-frequency
modes can be associated with phase transformations, while imaginary frequencies
provide an indication that the calculated structure is not the most stable. Finally,
the phonon spectrum enables a good approximation to free energies to be made
via the quasiharmonic approximation. In view of these, derivation of phonons from
αb initio calculations has become a very important topic [1]. Generally the αb initio
calculations of phonon frequencies fall into two methods: the linear response and
the direct approach. Works still appear in the literature, in which various combi-
nations of materials/methods/approximations and codes are tested. Aluminium is
often considered to be a representative free-electron like metal and in recent years
several calculations of phonons spectra for this material have been published. For
example, the different approaches based on the phenomenological and the pseu-
dopotential force constants have been compared in Ref. [2]. The αb initio cohesive
energies were used to evaluate the phonon dispersion relations with and without
three-body interaction [3]. Calculations based on the linear response theory which
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enables to handle nonlocal pseudopotentials have been performed by Quong and
Klein [4]. The phonon spectra calculated within the density-functional perturba-
tion theory (DFPT) have been done by de Gironcoli [5]. One can observe that
calculations based on the linear response theory, in case of Al, show an excellent
agreement with experiment. This is probably due to the fact that these methods
are not limited by supercells (range of interaction taken into account). Another
conclusion is that the local density approximation (LDA) works in this material
very well. According to Ref. [3], taking into account three-body interaction im-
proves considerably the results of calculations.

In this work the dispersion curves and frequency distribution of phonons are
investigated by the direct/supercell method [1, 6], in which the cumulative force
constants are calculated from αb initio Hellmann—Feynman (HF) forces, within
LDA for the density functional, on the 2 x 2 x 2 crystallographic supercell (which
means that the interaction is taken into account up to the 5th coordination shell).

The HF forces are defined as the minus derivative of the total energy Εtot
with respect to the position of ions Ri,

where n are the indices of the unit cell and i is the Cartesian component. At the
extremum all HF forces vanish. Non-zeroth HF forces arise, when a single atom
(m) is displaced by uj (m) from its equilibrium position. The arising forces are
related to the cumulative force constants Φij (n; m) by the relation [1, 6]

Cumulative force constants appear as a result of periodic boundary conditions
imposed on the supercell. To calculate HF- forces an atomic configuration with a
single displaced atom must be minimized with respect to the electronic part only.
In case of the fcc crystallographic cell each such run provides 12 or 96 HF-force
components for the 1 x 1 x 1 or 2 x 2 x 2 supercells, respectively. One run with pos-
itive and another with negative particle displacement along z direction is usually
performed. The data of HF forces fi(n) and displacements υj(m) form an overde-
termined set of equations, Eq. (2), for the force constants. This system is solved by
the singular value decomposition algorithm [6, 7], which automatically provides a
least squares solution. In case of the fcc lattice and the 2 x 2 x 2 supercell, the
96 components of the HF forces lead to 13 nonzero independent parameters of
the force constants. According to the direct method [1, 6, 8-10] the knowledge
of the cumulative force constants allows one to define an approximate dynamical
matrix, in which the summation over all atoms is confined to those atoms which
reside within the volume of the supercell. The approximate dynamical matrix be-
comes equal to the conventional one at discrete wave vectors k L given by the
equation exp(2πikL • L) = 1 [6], where L = (Li, £2, L3) are the lattice vectors of
the supercell. At the wave vectors kL the phonon frequencies ω 2 (kL ), calculated
by diagonalization of the approximate dynamical matrix, are the same as those
calculated from the exact dynamical matrix. At the fcc lattice and the 1 x 1 x 1
supercell the "exact" wave vectors are at Γ, X points, whereas at the 2 x 2 x 2
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supercell the "exact" wave vectors are at Γ, X, L, W, and two other points,
namely, the midpoint between Γ and X along (100) and (111) directions. The
advantage of the above described direct method is that it does not impose any
limit to the range of interaction. When the supercell size is smaller than the range
of interaction, the direct method interpolates the dispersion curves between the
exact points.

In the reported calculations the 2 x 2 x 2 supercell was used. The calcula-
tions were performed for few displacements (from 0.1% up to 5%) to check for
the convergence of dispersion curves and ensure that the calculations are within
harmonic region. In the final runs the displacement 0.5% of the lattice constant
was applied to calculate force fields. To increase the accuracy, two displacements
in the opposite directions have been applied.

The equilibrium properties of Al crystal and HF forces have been calculated
with the use of fhi96md plane-wave code [11, 12]. In the code the ion—electron
interaction is represented by fully separable norm-conserving αb initiο pseudopo-
tentials [13,14]. The Kohn—Sham wave functions are expanded in the plane-wave
basis set truncated at the kinetic energy cut-off Εcut. The integration in k-space is
performed with the use of the Monkhorst—Pack scheme [15]. In our calculations the
local density approximation (LDA) with the Ceperley—Alder form [16, 17] for the
exchange-correlation energy has been applied. The correction accounting for the
non-linear core-valence electron exchange-correlation interaction has been included
into the pseudopotential.

The convergence of the phonon frequency with respect to computational
parameters, the cut-off energy, and k-point sampling, was tested at the L point
of the Brillouin zone. A good convergence was observed starting from Εcut =
25 Hy and 10 k-points for the 2 x 2 x 2 supercell. In the final calculations for
the 2 x 2 x 2 supercell Ecut = 30 Ry and 20 k-points were used. The influence
of the Fermi-smearing parameter on the results was also checked. In agreement
with [18], no significant difference was observed by its changing from 0.1 eV to
0.2 eV and the latter value was employed in the calculations. The results appeared
to be influenced strongly (in particular the convergence of acoustic branches at Γ
point) by the accuracy in evaluation of the HF forces. Studying the stabilization of
curves with respect to this parameter we managed to reduce its value to 1 x 10 -7

hartree/bohr.
The equilibrium bulk lattice constant of the fcc Al crystal has been deter-

mined by the total energy minimization, at the same supercell configuration and
computational parameters as in further calculations of the HF force fields. The cal-
culated lattice constant, α = 3.972 Å, is somewhat smaller than the corresponding
experimental value (Table) which is due to the known deficiency of the LDA. How-
ever, the deviation amounts only about 1.9% so the agreement with experiment
can be considered as good. The calculated bulk modulus is 816 kbar which agrees
well with the measured one (Table).

The calculated phonon dispersion curves, corresponding to the temperature
T = 0 K are shown in Fig. 1. In the same figure they are compared with the
experimental phonon frequencies measured by the inelastic neutron scattering [20].
The overall agreement of the shape of the curves is very good. The largest difference
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appears at X point, where the discrepancy between experiment and calculations of
the transverse modes i8 about 6%. However, in the majority of points the calculated
frequencies lie within the experimental error. In Fig. 1 the error bars have been
drawn for X and L points. A major qualitative difference between experiment and
calculations is that experimental values of phonon frequencies at X and L points
are almost equal whereas the calculated ones differ distinctly, by about 8%.

The theory of lattice dynamics provides summation rules which follow from
translational and rotational invariances of the crystal. At fcc lattice these invari-
ances lead to one equation, which can be used to set the values of on-site force
constant parameter. If this condition is satisfied the acoustic phonon branches at
k = Ο would point to ω = Ο. Our dispersion curves, without imposed translational-

Fig. 1. Comparison of the calculated (solid lines) and experimental (circles) [20] phonon ^

dispersion for Αl. The wave vector is plotted in 2π/α units where a is given in Å.
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-rotational invariances point at k = 0 to ω = 0.0 ± 0.2 THz. (It varies with small
changes in the lattice constant, but no regular behaviour was observed.) Since the
invariance conditions should be satisfied within the αb initio and direct methods,
we did not correct our dispersion curves displayed in Fig. 1 for this effect.

Using Monte Carlo scheme based on the sampling of the dynamical matrix
at many wave vectors distributed homogeneously over the Brillouin zone, one
can calculate the phonon density function g(ω). The calculated density of states
function, conventionally normalized to f g(ω)dω = 1, is shown in Fig. 2. The curve
exhibits the most pronounced resonant behaviour at ω = 8.8 THz, which in terms
of energy expressed in units of Boltzmann constant corresponds to T = 422 K.

Fig. 2. The calculated phonon density of states in aluminium.

In summary, the density functional theory calculations of the lattice dynam-
ics of aluminium have been presented. The calculated phonon dispersion curves
show good agreement with experiment and other calculations. A major qualita-
tive difference between experimental and calculated data is the lowering of the
frequency at X point in relation to L point in the latter ones. According to the
discussion at the beginning of the paper, the discrepancy between calculations and
experiment can be attributed to both three-body interaction, not included in our
calculations, as well as long-range interaction, neglected by the choice of super-
cell. The local density approximation, although it leads to underestimation of the
lattice constant, seems to have less influence on phonon energies in aluminium.
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