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We use quantum billiard with many scattering centers to describe con-
ducting electrons properties in AnC60  crystals, where A denotes alkali metal.
We focus our attention on the A3 C60 crystal, for which we calculate the band
structure, density of states, and conductivity for normal electrons. Conduc-
tivity shows linear dependence on temperature in this model, which agrees
well with experimental data. We also discuss consequences of our results
for superconductivity mechanism in A3 C60 and possibilities of analogous
approach to describe electron properties in fused fullerenes and multiply
connected carbon clusters.

PACS numbers: 74.20.Mn, 74.25.Kc, 74.25.Jó

1. Introduction

Although the band structure of AnC60 crystals is relatively well known (cf.
[1-3]) there are still some doubts about applicability of conventional Fermi liquid
theory (in low temperatures) to these crystals (cf. [4]). Experiments show that for a
wide range of temperatures T the resistivity depends linearly on T, particularly in
Á3C60 (cf. [5]), which cannot be attributed to scattering on classical phonons. For
the same reason status of superconductivity phonon mechanism is unclear in these
crystals [4]. Thus it is important to investigate consequences of simple models,
where the mechanism of electrons bands structure appearance in AnC60 crystals
and interaction of electrons with lattice vibrations is considered. In this paper
we use as such a model three-dimensional quantum billiard, where free electrons
scatter on C60 molecules (the scattering centers) located in lattice nodes. The
scattering centers are modeled by potential V(x) of an isolated C60 molecule. .
It can be characterized as spherically symmetric attracting well V(x) (cf. [1]).
Bottom of the well is a sphere of radius R = 3.55 Α and its depth is ΔR = 3.0 Α.
The alkali ions A in A n C60 crystals modify symmetry and range of the potential
V(x) by polarizing the electrons in fully occupied molecular band hu . They are
located in high symmetry points in the inter nodes gaps (cf. e.g. [6]). Free electrons
move between Ch0 molecules mainly between overlapping potential wells (distance
C60 — C60 is of order 	 10 Å , cf. [1]):
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In this paper we show that the model of quantum billiard in AnC6 crystals,
in spite of its simplicity, is powerful enough to produce basic features of the band
structure. We show that in this model free electrons tend to occupy three overlap-
ping (or lying very close one to another) bands. In order to maintain consistency
with C60 molecule spectral structure we shall refer to these bands as t1u. We use
the band structure obtained within this model to determine resistivity of Α3C60
crystal. In our calculations we use the Kubo—Greenwood formula.

2. The band structure (quantum billiard model)

We shall focus our attention on Α3C60 crystal. It has fcc structure with
Ch0 located at lattice nodes. The A ions occupy all available interstitial positions.
That is why in flrst approximation we can assume that the spherical symmetry of
potential V(x) is preserved.

Since we make only a model calculation we shall replace skew elementary
cell of fcc lattice with simple cubic one having a lattice constant α = 10 Å, which
is equal to real distance between the nearest neighbors C60—C60 in fcc lattice.
Value of the potential VB inside the spherical well is negative. In numerical calcu-
lations we take VB = —4 eV. The parameters VB , α, R, ΔR determine the bands
structure.

In our calculations we should also take into account the geometry (G) of the
C60 molecule. The simplest way to do this is by expressing diameter D = 7.1Á of
the molecule in terms of energy VG = 3 eV. The electrons with this energy will be
the most effectively scattered by Ch0 centers. .

Consequently we get the following formula for our spherical potential well
model of the quantum billiard:

where θ is the Heaviside step function. The Fourier transform of this potential
in arbitrary dimension d is expressed by the Bessel Jd/2 functions. This property
allows for relatively easy numerical calculations of electron's Bloch states ψv,k(Χ)
and their energies Ek (in the v-th band for a vector k from the Brillouin zone)
from the Schrödinger equation

where V(x — Ri) denotes potential around i-th lattice node, whose location is
indicated by vector Ri and m is the electron mass. The sum runs over all sc
lattice nodes. In the case of finite crystals of volume we assume periodic boundary
conditions. One can easily notice that for dimension d = 1 potential V(x) becomes
the Kronig—Penny model.

3. Resistivity (mass operator and vertex operator)

In the case of partially filled band t 1 u the electrons from a neighborhood
of the Fermi surface will scatter on phonons and themselves. In our model we
can describe all kinds of vibrations which occur in real system. They can be ac-
counted for by considering distortions of balls surfaces, i.e. actually displacements
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of spheres °[(R+ΔR) 2 — (x—Ri) 2 ] or θ[R2 —(x—Ri) 2 ], which can be regarded as a
spherical membrane. Here we will use only the transversal "breathing" vibrations,
which seem to interact with electrons most effectively. Vibrations tangent to the
spheres or locally perpendicular vibrations are less effective for obvious reasons.
The breathing vibrations of internal ball are a reflection of the same vibrations of
carbon atoms in C60 while the breathing vibrations of external ball result from
breathing vibrations of A ions. The internal vibrations can be neglected in first
approximation since the total mass of carbon atoms in core C60 is very large.
Therefore we remain with the external vibrations. Their phonon energy is of order
Ελ 100 cm-1 . We shall denote the function Σ VB8[(R+ ΔR+ri) 2 - (χ- Χ) 2 ]
as Vb(r, x) or shortly Vb. The parameters r = (ri) describe transversal displace-
ments of external sphere. As it is commonly known (cf. [7]) in order to calculate
resistivity from the Kubo—Greenwood formula it is necessary to derive the mass
operator Σ and the vertex operator Γ. Here we calculate them in the first order
of the non-crossing approximation

where ph denotes mean value of phonon fluctuations over temperature, H0 is
Hamiltonian (2), where the function Vb is replaced with (Vb)h, p is momentum
operator, Vm = Vb = (Vb) ph. This shows that significant contribution to Σ and
Γ comes from membrane potential Vm . Calculation of mean values in (3) can be
done explicitly, since it consists in calculating of iterated Gaussian integrals over
variables r = (ri), where the square of standard deviation σ2A = Ι 2 (2mλΕA) -1

coth(βΕA/2) and mA is A ion mass. The σÁ is small for real systems. For potassium
atom in temperature Τ = 0 K it is of order 4.3 x 10 -4 Α 2 , and thus it can be used
for series expansion. Therefore our approximation for mass and vertex operators
seems to be sufficiently justified.

4. Results and conclusions
Results of our calculations are presented in Fig. 1. It is clearly visible that

the bands tlu constitute a group of three bands. Degree of overlapping and their
width depends strongly on the depth of the well VB. The deeper the well the more
overlapped and narrower the bands are. In real Á3C60 system the width is of order

0.5 eV. In our model this occurs for VB —6.0 eV. In the density of states graph
we can see t ig and higher bands. The geometrical parameter VG has insignificant
influence on the spectral structure of the system.

Graph of resistivity p(T) as function of temperature, in temperature range
100-350 K, shows nearly linear dependence. This result was obtained by taking
into account interactions not with "point-like" object but with extended objects
resembling spherical membranes. In this context it confirms the statement that
scattering on phonons should not lead to linear dependence [4]. It would be inter-
esting to investigate the "membrane mechanism" of electron pairing (in contrast
to phonon one) as well as influence of the quantum chaos on superconductivity for
the billiard model.

Because of its simplicity the model can also be used for description of electron
properties in fused fullerenes and multiply connected carbon clusters [8]. In the
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Fig. 1. Selected properties of quantum billiard model for Α3 C60 crystal. (a) The bands
electron structure. (b) Density of states g(Ε) = 2(2π) -3 fBz Σ δ(Ε—Ε (k)) graph. The
Shrödinger equation was solved numerically for 5 x 5 x 5 cluster in the reciprocal lattice.
(c) Graph illustrating dependence of ρ(T) on temperature Τ for different densities of
electrons measured in units of 10 21 cm 3 .

case of these systems the potential V(x) will have symmetry implied by the surface
geometry of clusters.
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